Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In
This content will become publicly available on April 7, 2023
- Editors:
- Chen, Xuemei
- Award ID(s):
- 2101337
- Publication Date:
- NSF-PAR ID:
- 10322794
- Journal Name:
- PLOS Biology
- Volume:
- 20
- Issue:
- 4
- ISSN:
- 1545-7885
- Sponsoring Org:
- National Science Foundation
More Like this
-
Brassica rapa , RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression duringB. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues. -
Arabidopsis seed development involves maternal small interfering RNAs (siRNAs) that induce RNA-directed DNA methylation (RdDM) through theNRPD1 -mediated pathway. To investigate their biological functions, we characterized siRNAs in the endosperm and seed coat that were separated by laser-capture microdissection (LCM) in reciprocal genetic crosses with annrpd1 mutant. We also monitored the spatial-temporal activity of theNRPD1 -mediated pathway on seed development using the AGO4:GFP::AGO4 (promoter:GFP::protein) reporter and promoter:GUS sensors of siRNA-mediated silencing. From these approaches, we identified four distinct groups of siRNA loci dependent on or independent of the maternalNRPD1 allele in the endosperm or seed coat. A group of maternally expressedNRPD1 -siRNA loci targets endosperm-preferred genes, including those encoding AGAMOUS-LIKE (AGL) transcription factors. Using translational promoter:AGL::GUS constructs as sensors, we demonstrate that spatial and temporal expression patterns of these genes in the endosperm are regulated by theNRPD1 -mediated pathway irrespective of complete silencing (AGL91 ) or incomplete silencing (AGL40 ) of these target genes. Moreover, altered expression of these siRNA-targeted genes affects seed size. We propose that the corresponding maternal siRNAs could account for parent-of-origin effects on the endosperm in interploidy and hybrid crosses. These analyses reconcile previous studies on siRNAs and imprinted gene expression during seed development. -
Abstract Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (matmore »
-
Abstract Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.
-
The Arabidopsis DEMETER (DME) DNA glycosylase demethylates the central cell genome prior to fertilization. This epigenetic reconfiguration of the female gamete companion cell establishes gene imprinting in the endosperm and is essential for seed viability. DME demethylates small and genic-flanking transposons as well as intergenic and heterochromatin sequences, but how DME is recruited to these loci remains unknown. H1.2 was identified as a DME-interacting protein in a yeast two-hybrid screen, and maternal genome H1 loss affects DNA methylation and expression of selected imprinted genes in the endosperm. Yet, the extent to which H1 influences DME demethylation and gene imprinting in the Arabidopsis endosperm has not been investigated. Here, we showed that without the maternal linker histones, DME-mediated demethylation is facilitated, particularly in the heterochromatin regions, indicating that H1-bound heterochromatins are barriers for DME demethylation. Loss of H1 in the maternal genome has a very limited effect on gene transcription or gene imprinting regulation in the endosperm; however, it variably influences euchromatin TE methylation and causes a slight hypermethylation and a reduced expression in selected imprinted genes. We conclude that loss of maternal H1 indirectly influences DME-mediated demethylation and endosperm DNA methylation landscape but does not appear to affect endosperm genemore »