skip to main content

Title: Tuning the photophysical properties of lanthanide( iii )/zinc( ii ) ‘encapsulated sandwich’ metallacrowns emitting in the near-infrared range
A family of Zn 16 Ln(HA) 16 metallacrowns (MCs; Ln = Yb III , Er III , and Nd III ; HA = picoline- (picHA 2− ), pyrazine- (pyzHA 2− ), and quinaldine- (quinHA 2− ) hydroximates) with an ‘encapsulated sandwich’ structure possesses outstanding luminescence properties in the near-infrared (NIR) and suitability for cell imaging. Here, to decipher which parameters affect their functional and photophysical properties and how the nature of the hydroximate ligands can allow their fine tuning, we have completed this Zn 16 Ln(HA) 16 family by synthesizing MCs with two new ligands, naphthyridine- (napHA 2− ) and quinoxaline- (quinoHA 2− ) hydroximates. Zn 16 Ln(napHA) 16 and Zn 16 Ln(quinoHA) 16 exhibit absorption bands extended into the visible range and efficiently sensitize the NIR emissions of Yb III , Er III , and Nd III upon excitation up to 630 nm. The energies of the lowest singlet (S 1 ), triplet (T 1 ) and intra-ligand charge transfer (ILCT) states have been determined. Ln III -centered total ( Q LLn) and intrinsic ( Q LnLn) quantum yields, sensitization efficiencies ( η sens ), observed ( τ obs ) and radiative ( τ rad ) luminescence lifetimes have more » been recorded and analyzed in the solid state and in CH 3 OH and CD 3 OD solutions for all Zn 16 Ln(HA) 16 . We found that, within the Zn 16 Ln(HA) 16 family, τ rad values are not constant for a particular Ln III . The close in energy positions of T 1 and ILCT states in Zn 16 Ln(picHA) 16 and Zn 16 Ln(quinHA) 16 are preferred for the sensitization of Ln III NIR emission and η sens values reach 100% for Nd III . Finally, the highest values of Q LLn are observed for Zn 16 Ln(quinHA) 16 in the solid state or in CD 3 OD solutions. With these data at hand, we are now capable of creating MCs with desired properties suitable for NIR optical imaging. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Chemical Science
Sponsoring Org:
National Science Foundation
More Like this
  1. A new series of gallium( iii )/lanthanide( iii ) metallacrown (MC) complexes ( Ln-1 ) was synthesized by the direct reaction of salicylhydroxamic acid (H 3 shi) with Ga III and Ln III nitrates in a CH 3 OH/pyridine mixture. X-ray single crystal analysis revealed two types of structures depending on whether the nitrate counterion coordinate or not to the Ln III : [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 4 (NO 3 )](py) 2 (Ln = Gd III , Tb III , Dy III , Ho III ) and [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 5 ](NO 3 )(py) (Ln = Er III , Tm III , Yb III ). The representative Tb-1 and Yb-1 MCs consist of a Tb/YbGa 4 core with four [Ga III –N–O] repeating units forming a non-planar ring that coordinates the central Ln III through the oxygen atoms of the four shi 3− groups. Two H 2 shi − groups bridge the Ln III to the Ga III ring ions. The Yb III in Yb-1 is eight-coordinated while the ligation of the nine-coordinated Tb III in Tb-1 is completed by one chelating nitrate ion. Ln-1 complexes in the solidmore »state showed characteristic sharp f–f transitions in the visible (Tb, Dy) and near-infrared (Dy, Ho, Er, Yb) spectral ranges upon excitation into the ligand-centered electronic levels at 350 nm. Observed luminescence lifetimes and absolute quantum yields were collected and discussed. For Yb-1 , luminescence data were also acquired in CH 3 OH and CD 3 OD solutions and a more extensive analysis of photophysical properties was performed. This work demonstrates that while obtaining highly luminescent lanthanide( iii ) MCs via a direct synthesis is feasible, many factors such as molar absorptivities, triplet state energies, non-radiative deactivations through vibronic coupling with overtones of O–H, N–H, and C–H oscillators and crystal packing will strongly contribute to the luminescent properties and should be carefully considered.« less
  2. A new pyridine-bis(carboxamide)-based ligand with a bithiophene pendant, 2Tcbx, was synthesized. Its lanthanide ion (Ln III ) complexes, [Ln(2Tcbx) 2 ] 3+ , were isolated and their photophysical properties were explored. Upon excitation at 360 nm, these complexes display emission in the near-infrared (NIR) with efficiencies of 0.69% for Ln III = Yb III , 0.20% for Ln III = Nd III , and 0.01% for Ln III = Er III , respectively. Concurrent 1 O 2 formation was seen for all complexes, with efficiencies of 19% for the Yb III complex, 25% for the Nd III complex, and 9% for the Er III complex. When exciting at a longer wavelength, 435 nm, only Ln III emission was observed and larger efficiencies of Ln III -centered emission were obtained. The lack of 1 O 2 generation indicates that energy pathways involving different ligand conformations, which were investigated by transient absorption spectroscopy, are involved in the sensitization process, and enable the wavelength-dependent generation of 1 O 2 .
  3. The synthesis of a novel family of homoleptic COT-based heterotrimetallic self-assemblies bearing the formula [LnKCa(COT) 3 (THF) 3 ] (Ln( iii ) = Gd, Tb, Dy, Ho, Er, Tm, and Yb) is reported followed by their X-ray crystallographic and magnetic characterization. All crystals conform to the monoclinic P 2 1 / c space group with a slight compression of the unit cell from 3396.4(2) Å 3 to 3373.2(4) Å 3 along the series. All complexes exhibit a triple-decker structure having the Ln( iii ) and K( i ) ions sandwiched by three COT 2− ligands with an end-bound {Ca 2+ (THF) 3 } moiety to form a non-linear (153.5°) arrangement of three different metals. The COT 2− ligands act in a η 8 -mode with respect to all metal centers. A detailed structural comparison of this unique set of heterotrimetallic complexes has revealed consistent trends along the series. From Gd to Yb, the Ln to ring-centroid distance decreases from 1.961(3) Å to 1.827(2) Å. In contrast, the separation of K( i ) and Ca( ii ) ions from the COT-centroid (2.443(3) and 1.914(3) Å, respectively) is not affected by the change of Ln( iii ) ions. The magnetic property investigationmore »of the [LnKCa(COT) 3 (THF) 3 ] series (Ln( iii ) = Gd, Tb, Dy, Ho, Er, and Tm) reveals that the Dy, Er, and Tm complexes display slow relaxation of their magnetization, in other words, single-molecule magnet (SMM) properties. This behaviour is dominated by thermally activated (Orbach-like) and quantum tunneling processes for [DyKCa(COT) 3 (THF) 3 ] in contrast to [ErKCa(COT) 3 (THF) 3 ], in which the thermally activated and Raman processes appear to be relevant. Details of the electronic structures and magnetic properties of these complexes are further clarified with the help of DFT and ab initio theoretical calculations.« less
  4. Bis(phthalocyaninato)lanthanoid( iii ) (LnPc 2 ) complexes have attracted significant attention for their exceptional optical, electronic and magnetic properties. Crystallization of these compounds usually requires cumbersome methods such as sublimation and electrocrystallization, which is a significant limitation to both structural determinations and the preparation of high purity materials at scale. We report here the selective crystallization of four polymorphs of LnPc 2 obtained exclusively by the slow evaporation of saturated solutions. The obtained phase depends on the initial oxidation state of the LnPc 2 molecule and the choice of solvent. Single-crystal X-ray diffraction studies were used to determine 14 new structures including Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Er and Yb, as well as correct previous mis-identifications from the literature. We provide a detailed comparison of molecular structure and crystal packing in all LnPc 2 polymorphs. The primary feature in all phases is columnar stacking based on parallel π–π interactions, with a variety of slip angles within those stacks as well as secondary interactions between them. Chemical redox and acid–base titrations, performed on re-dissolved crystals demonstrate that LnPc 2 + and LnPc 2 − are easily obtained through weak oxidizing and reducing agents, respectively. Additionally, we showmore »that the protonated form of the NdPc 2 − complex has a nearly identical UV-vis spectrum to that of neutral NdPc 2 , explaining some of the confusion over chemical composition in previously published literature.« less
  5. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′more »3 Ln compounds.« less