skip to main content


Title: Structure sensitive enantioselectivity on surfaces: tartaric acid on all surfaces vicinal to Cu(111)
Comprehensive mapping of enantiospecific surface reactivity versus the crystallographic orientation of Cu( hkl ) surfaces vicinal to Cu(111) has been conducted using a spherically shaped single crystal on which the surface normal vectors, [ hkl ], span all possible orientations lying with 14° of the [111] direction. This has allowed direct measurement on 169 different Cu( hkl ) surfaces of the two rate constants, k (hkl)i and k (hkl)e, that determine the kinetics of the vacancy-mediated, explosive decomposition of tartaric acid (TA). The initiation rate constant, k (hkl)i, quantifies the kinetics of an initiation step that creates vacancies in the adsorbed TA monolayer. The explosion rate constant, k (hkl)e, quantifies the kinetics of a vacancy-mediated explosion step that results in TA decomposition and product desorption. Enantiospecificity is revealed by the dependence of TA decomposition kinetics on the chirality of the local surface orientation. Diastereomerism is demonstrated by the fact that d -TA is more reactive than l -TA on S surfaces while l -TA is more reactive on R surfaces. The time to reach half coverage, t (hkl)1/2, during isothermal TA decomposition at 433 K allowed determination of the most enantiospecific surface orientation; Cu(754). The ideal Cu(754) surface structure consists of (111) terraces separated by monoatomic steps formed by the (100) and (110) microfacets.  more » « less
Award ID(s):
2102082
NSF-PAR ID:
10322864
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Advances
Volume:
3
Issue:
4
ISSN:
2633-5409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&Ssurfaces. Isotopically labelled 1‐13C‐l‐Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination ofd‐Pro and 1‐13C‐l‐Pro when adsorbed as mixtures. On the Cu(111) surface, X‐ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&Ssurface, adsorbed Pro enantiomers decompose with non‐enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&Ssurfaces to a racemic gas phase mixture ofd‐Pro and 1‐13C‐l‐Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non‐racemic mixtures ofd‐Pro and 1‐13C‐l‐Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co‐adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption ofd‐Pro and 1‐13C‐l‐Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations ofdl‐Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution.

     
    more » « less
  2. Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is much more challenging. Herein, we demonstrate that the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral ‘29’ copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals which expose a continuous distribution of surface orientations as a function of position on the crystal, enabled us to systematically investigate the mechanism of chirality transfer between metal and oxide with high-resolution scanning tunneling microscopy. We discovered that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the ‘29’ oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We used this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a ‘29’ oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by very slight misorientation of a metal surface (~1 sites/ 20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (~75 sites/ 20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately miscut metal surface. 
    more » « less
  3. The adsorption and decomposition of HCN on the Pd(111) and Ru(001) surfaces have been studied with reflection absorption infrared spectroscopy and density functional theory calculations. The results are compared to earlier studies of HCN adsorption on the Pt(111) and Cu(100) surfaces. In all cases the initial adsorption at low temperatures gives rise to a ν (C–H) stretch peak at ∼3300 cm −1 , which is very close to the gas phase value indicating that the triple CN bond is retained for the adsorbed molecule. When the Pd(111) surface is heated to room temperature, the HCN is converted to the aminocarbyne species, CNH 2 , which was also observed on the Pt(111) surface. DFT calculations confirm the high stability of CNH 2 on Pd(111), and suggest a bi-molecular mechanism for its formation. When HCN on Cu(100) is heated, it desorbs without reaction. In contrast, no stable intermediates are detected on Ru(001) as the surface is heated, indicating that HCN decomposes completely to atomic species. 
    more » « less
  4. Abstract

    Solid–gas interactions at electrode surfaces determine the efficiency of solid‐oxide fuel cells and electrolyzers. Here, the correlation between surface–gas kinetics and the crystal orientation of perovskite electrodes is studied in the model system La0.8Sr0.2Co0.2Fe0.8O3. The gas‐exchange kinetics are characterized by synthesizing epitaxial half‐cell geometries where three single‐variant surfaces are produced [i.e., La0.8Sr0.2Co0.2Fe0.8O3/La0.9Sr0.1Ga0.95Mg0.05O3−δ/SrRuO3/SrTiO3(001), (110), and (111)]. Electrochemical impedance spectroscopy and electrical conductivity relaxation measurements reveal a strong surface‐orientation dependency of the gas‐exchange kinetics, wherein (111)‐oriented surfaces exhibit an activity >3‐times higher as compared to (001)‐oriented surfaces. Oxygen partial pressure ()‐dependent electrochemical impedance spectroscopy studies reveal that while the three surfaces have different gas‐exchange kinetics, the reaction mechanisms and rate‐limiting steps are the same (i.e., charge‐transfer to the diatomic oxygen species). First‐principles calculations suggest that the formation energy of vacancies and adsorption at the various surfaces is different and influenced by the surface polarity. Finally, synchrotron‐based, ambient‐pressure X‐ray spectroscopies reveal distinct electronic changes and surface chemistry among the different surface orientations. Taken together, thin‐film epitaxy provides an efficient approach to control and understand the electrode reactivity ultimately demonstrating that the (111)‐surface exhibits a high density of active surface sites which leads to higher activity.

     
    more » « less
  5. In Atom Transfer Radical Polymerization (ATRP), Cu 0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the Cu I activator through a comproportionation reaction, respectively. Cu 0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP ( e ATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in e ATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage. 
    more » « less