Abstract A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&Ssurfaces. Isotopically labelled 1‐13C‐l‐Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination ofd‐Pro and 1‐13C‐l‐Pro when adsorbed as mixtures. On the Cu(111) surface, X‐ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&Ssurface, adsorbed Pro enantiomers decompose with non‐enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&Ssurfaces to a racemic gas phase mixture ofd‐Pro and 1‐13C‐l‐Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non‐racemic mixtures ofd‐Pro and 1‐13C‐l‐Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co‐adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption ofd‐Pro and 1‐13C‐l‐Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations ofdl‐Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution.
more »
« less
Templated Growth of a Homochiral Thin Film Oxide
Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is much more challenging. Herein, we demonstrate that the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral ‘29’ copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals which expose a continuous distribution of surface orientations as a function of position on the crystal, enabled us to systematically investigate the mechanism of chirality transfer between metal and oxide with high-resolution scanning tunneling microscopy. We discovered that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the ‘29’ oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We used this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a ‘29’ oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by very slight misorientation of a metal surface (~1 sites/ 20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (~75 sites/ 20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately miscut metal surface.
more »
« less
- PAR ID:
- 10142139
- Date Published:
- Journal Name:
- ACS Nano
- ISSN:
- 1936-0851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structure sensitive enantioselectivity on surfaces: tartaric acid on all surfaces vicinal to Cu(111)Comprehensive mapping of enantiospecific surface reactivity versus the crystallographic orientation of Cu( hkl ) surfaces vicinal to Cu(111) has been conducted using a spherically shaped single crystal on which the surface normal vectors, [ hkl ], span all possible orientations lying with 14° of the [111] direction. This has allowed direct measurement on 169 different Cu( hkl ) surfaces of the two rate constants, k (hkl)i and k (hkl)e, that determine the kinetics of the vacancy-mediated, explosive decomposition of tartaric acid (TA). The initiation rate constant, k (hkl)i, quantifies the kinetics of an initiation step that creates vacancies in the adsorbed TA monolayer. The explosion rate constant, k (hkl)e, quantifies the kinetics of a vacancy-mediated explosion step that results in TA decomposition and product desorption. Enantiospecificity is revealed by the dependence of TA decomposition kinetics on the chirality of the local surface orientation. Diastereomerism is demonstrated by the fact that d -TA is more reactive than l -TA on S surfaces while l -TA is more reactive on R surfaces. The time to reach half coverage, t (hkl)1/2, during isothermal TA decomposition at 433 K allowed determination of the most enantiospecific surface orientation; Cu(754). The ideal Cu(754) surface structure consists of (111) terraces separated by monoatomic steps formed by the (100) and (110) microfacets.more » « less
-
Copper oxide nanostructures are widely used for various applications due to their unique optical and electrical properties. In this work, we demonstrate an atmospheric laser-induced oxidation technique for the fabrication of highly electrochemically active copper oxide hierarchical micro/nano structures on copper surfaces to achieve highly sensitive non-enzymatic glucose sensing performance. The effect of laser processing power on the composition, crystallinity, microstructure, wettability, and color of the laser-induced oxide on copper (LIO-Cu) surface was systematically studied using scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GI-XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), EDX-mapping, water contact angle measurements, and optical microscopy. Results of these investigations showed a remarkable increase in copper oxide composition by increasing the laser processing power. The pore size distribution and surface area of the pristine and LIO-Cu sample estimated by N 2 adsorption–desorption data showed a developed mesoporous LIO-Cu structure. The size of the generated nano-oxides, crystallinity, and electroactivity of the LIO-Cu were observed to be adjustable by the laser processing power. The electrocatalytic activity of LIO-Cu surfaces was studied by means of cyclic voltammetry (CV) within a potential window of −0.8 to +0.8 V and chronoamperometry in an applied optimized potential of +0.6 V, in 0.1 M NaOH solution and phosphate buffer solution (PBS), respectively. LIO-Cu surfaces with optimized laser processing powers exhibited a sensitivity of 6950 μA mM −1 cm −2 within a wide linear range from 0.01 to 5 mM, with exceptional specificity and response time (<3 seconds). The sensors also showed excellent response stability over a course of 50 days that was originated from the binder-free robust electroactive film fabricated directly onto the copper surface. The demonstrated one-step LIO processing onto commercial metal films, can potentially be applied for tuneable and scalable roll-to-roll fabrication of a wide range of high surface area metal oxide micro/nano structures for non-enzymatic biosensing and electrochemical applications.more » « less
-
Abstract Elucidating metal oxide growth mechanisms is essential for precisely designing and fabricating nanostructured oxides with broad applications in energy and electronics. However, current epitaxial oxide growth methods are based on macroscopic empirical knowledge, lacking fundamental guidance at the nanoscale. Using correlated in situ environmental transmission electron microscopy, statistically-validated quantitative analysis, and density functional theory calculations, we show epitaxial Cu2O nano-island growth on Cu is layer-by-layer along Cu2O(110) planes, regardless of substrate orientation, contradicting classical models that predict multi-layer growth parallel to substrate surfaces. Growth kinetics show cubic relationships with time, indicating individual oxide monolayers follow Frank-van der Merwe growth whereas oxide islands follow Stranski-Krastanov growth. Cu sources for island growth transition from step edges to bulk substrates during oxidation, contrasting with classical corrosion theories which assume subsurface sources predominate. Our results resolve alternative epitaxial island growth mechanisms, improving the understanding of oxidation dynamics critical for advanced manufacturing at the nanoscale.more » « less
-
Chiral organosilica particles of size ~200 nm were synthesized from an enantio-pure multi-armed chiral D-maltose organosilane precursor in the absence of co-condensation with an achiral monomer. Two distinct experiments were performed to demonstrate the particles’ ability to induce conformational deracemization of a host liquid crystal. The first involves an electric field-induced tilt of the liquid crystal director in the deracemized smectic-A phase. The other involves domain wall curvature separating left- and right-handed liquid crystal helical pitch domains imposed by the cells’ substrates. The results demonstrate unequivocally that enantio-pure organosilica nanoparticles can be synthesized and can induce chirality in a host.more » « less
An official website of the United States government

