skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing the interplay between lattice dynamics and short-range magnetic correlations in CuGeO3 with femtosecond RIXS
Abstract Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K -edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO 3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.  more » « less
Award ID(s):
1842056 1752713
PAR ID:
10322866
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
npj Quantum Materials
Volume:
6
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials. 
    more » « less
  2. Abstract Charge, spin and Cooper-pair density waves have now been widely detected in exotic superconductors. Understanding how these density waves emerge — and become suppressed by external parameters — is a key research direction in condensed matter physics. Here we study the temperature and magnetic-field evolution of charge density waves in the rare spin-triplet superconductor candidate UTe2using scanning tunneling microscopy/spectroscopy. We reveal that charge modulations composed of three different wave vectors gradually weaken in a spatially inhomogeneous manner, while persisting to surprisingly high temperatures of 10–12 K. We also reveal an unexpected decoupling of the three-component charge density wave state. Our observations match closely to the temperature scale potentially related to short-range magnetic correlations, providing a possible connection between density waves observed by surface probes and intrinsic bulk features. Importantly, charge density wave modulations become suppressed with magnetic field both below and above superconductingTcin a comparable manner. Our work points towards an intimate connection between hidden magnetic correlations and the origin of the unusual charge density waves in UTe2
    more » « less
  3. We investigate fermionic Mott insulators in a geometrically frustrated triangular lattice, a paradigm model system for studying spin liquids and spontaneous time-reversal symmetry breaking. Our study demonstrates the preparation of triangular Mott insulators and reveals antiferromagnetic spin-spin correlations among all nearest neighbors. We employ a real-space triangular-geometry quantum gas microscope to measure density and spin observables. Comparing experimental results with calculations based on numerical linked cluster expansions and quantum Monte Carlo techniques, we demonstrate thermometry in the frustrated system. Our experimental platform introduces an alternative approach to frustrated lattices which paves the way for future investigations of exotic quantum magnetism which may lead to a direct detection of quantum spin liquids in Hubbard systems. 
    more » « less
  4. Direct detection of spontaneous spin fluctuations, or “magnetization noise,” is emerging as a powerful means of revealing and studying magnetic excitations in both natural and artificial frustrated magnets. Depending on the lattice and nature of the frustration, these excitations can often be described as fractionalized quasiparticles possessing an effective magnetic charge. Here, by combining ultrasensitive optical detection of thermodynamic magnetization noise with Monte Carlo simulations, we reveal emergent regimes of magnetic excitations in artificial “tetris ice.” A marked increase of the intrinsic noise at certain applied magnetic fields heralds the spontaneous proliferation of fractionalized excitations, which can diffuse independently, without cost in energy, along specific quasi-1D spin chains in the tetris ice lattice. 
    more » « less
  5. Abstract The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order atTN ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment belowTCDW ≈ 110 K, and finally forms ac-axis double cone AFM structure aroundTCanting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well aboveTCantingandTCDWthat merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging belowTNwhere AFM order is commensurate, start to deviate from the Bose factor aroundTCDW, and peaks atTCanting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order. 
    more » « less