skip to main content


Search for: All records

Award ID contains: 1842056

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr 14−x Ca x Cu 24 O 41 (SCCO) using Cu L 3 -edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with high ( x  = 12.2) and without ( x  = 0) Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2 T) excitations ( x  = 0) to weakly-dispersive gapped modes at an energy of 280 meV ( x  = 12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x  = 12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving Δ S  = 0 scattering from the predominant Δ S  = 1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the Δ S  = 0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO 4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase from which superconductivity emerges in SCCO at elevated pressures. 
    more » « less
  2. Abstract The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y 2 BaNiO 5 using Ni L 3 -edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y 2 BaNiO 5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations. 
    more » « less
  3. Data files for the manuscript "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet".

    Reference: A. Nag, A. Nocera, S. Agrestini, M. Garcia-Fernandez, A. C. Walters, Sang-Wook Cheong, S. Johnston, and Ke-Jin Zhou, "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet". arXiv:2111.03625 (2021).

    Preprint: arXiv:2111.03625 (2021), URL: https://arxiv.org/abs/2111.03625

     
    more » « less
  4. Abstract Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K -edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO 3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Resonant inelastic X-ray scattering (RIXS) is used increasingly for characterizing low-energy collective excitations inmaterials. RIXS is a powerful probe, which often requiressophisticated theoretical descriptions to interpret the data. Inparticular, the need for accurate theories describing the influence of electron-phonon (e-p) coupling on RIXS spectra is becoming timely, as instrument resolution improves and this energy regime is rapidly becoming accessible. To date, only rather exploratory theoretical work has beencarried out for such problems. We begin to bridge this gap byproposing a versatile variational approximation for calculating RIXS spectra in weakly doped materials, for a variety of models with diverse e-p couplings. Here, we illustrate some of its potential by studying the role of electron mobility, which is completely neglected in the widely used local approximation based on Lang-Firsov theory. Assuming that the e-p coupling is of the simplest, Holstein type, we discuss the regimes where the local approximation fails, and demonstrate that its improper use may grossly underestimate the e-p coupling strength. 
    more » « less