Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body phenomena. Recently NiPS3has received intense interest since it hosts an excitonic quasiparticle whose properties appear to be intimately linked to the magnetic state of the lattice. Despite extensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain unresolved. Here we address these issues by measuring NiPS3with ultra-high energy resolution resonant inelastic x-ray scattering (RIXS). We find that Hund’s exchange interactions are primarily responsible for the energy of formation of the exciton. Measuring the dispersion of the Hund’s exciton reveals that it propagates in a way that is analogous to a double-magnon. We trace this unique behavior to fundamental similarities between the NiPS3exciton hopping and spin exchange processes, underlining the unique magnetic characteristics of this novel quasiparticle.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available April 29, 2025 -
Abstract The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum‐ and yttrium‐based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short‐range CDW in bismuth‐based cuprates. Here, high‐resolution resonant inelastic x‐ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2Sr2 −
x Lax CuO6 + δ. Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real‐space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°‐rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates. -
We present a density matrix renormalization group study of the doped one-dimensional (1D) Hubbard-Su-Schrieffer-Heeger (Hubbard-SSH) model, where the atomic displacements linearly modulate the nearest-neighbor hopping integrals. Focusing on an optical variant of the model in the strongly correlated limit relevant for cuprate spin chains, we examine how the SSH interaction modifies the model's ground- and excited-state properties. The SSH coupling weakly renormalizes the model's single- and two-particle response functions for electron-phonon (𝑒−ph) coupling strengths below a parameter-dependent critical value 𝑔c. For larger 𝑒−ph coupling, the sign of the effective hopping integrals changes for a subset of orbitals, which drives a lattice dimerization distinct from the standard nesting-driven picture in 1D. The spectral weight of the one- and two-particle dynamical response functions are dramatically rearranged across this transition, with significant changes in the ground-state correlations. We argue that this dimerization results from the breakdown of the linear approximation for the 𝑒−ph coupling and thus signals a fundamental limitation of the linear SSH interaction. Our results have consequences for our understanding of how SSH-like interactions can enter the physics of strongly correlated quantum materials, including the recently synthesized doped cuprate spin chains.more » « less
-
Abstract The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y 2 BaNiO 5 using Ni L 3 -edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y 2 BaNiO 5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.more » « less
-
Abstract We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr 14−x Ca x Cu 24 O 41 (SCCO) using Cu L 3 -edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with high ( x = 12.2) and without ( x = 0) Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2 T) excitations ( x = 0) to weakly-dispersive gapped modes at an energy of 280 meV ( x = 12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x = 12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving Δ S = 0 scattering from the predominant Δ S = 1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the Δ S = 0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO 4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase from which superconductivity emerges in SCCO at elevated pressures.more » « less
-
Data files for the manuscript "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet".
Reference: A. Nag, A. Nocera, S. Agrestini, M. Garcia-Fernandez, A. C. Walters, Sang-Wook Cheong, S. Johnston, and Ke-Jin Zhou, "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet". arXiv:2111.03625 (2021).
Preprint: arXiv:2111.03625 (2021), URL: https://arxiv.org/abs/2111.03625
-
Abstract Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K -edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO 3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.more » « less