skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Animal soundscapes reveal key markers of Amazon forest degradation from fire and logging
Safeguarding tropical forest biodiversity requires solutions for monitoring ecosystem structure over time. In the Amazon, logging and fire reduce forest carbon stocks and alter habitat, but the long-term consequences for wildlife remain unclear, especially for lesser-known taxa. Here, we combined multiday acoustic surveys, airborne lidar, and satellite time series covering logged and burned forests ( n = 39) in the southern Brazilian Amazon to identify acoustic markers of forest degradation. Our findings contradict expectations from the Acoustic Niche Hypothesis that animal communities in more degraded habitats occupy fewer “acoustic niches” defined by time and frequency. Instead, we found that aboveground biomass was not a consistent proxy for acoustic biodiversity due to the divergent patterns of “acoustic space occupancy” between logged and burned forests. Ecosystem soundscapes highlighted a stark, and sustained reorganization in acoustic community assembly after multiple fires; animal communication networks were quieter, more homogenous, and less acoustically integrated in forests burned multiple times than in logged or once-burned forests. These findings demonstrate strong biodiversity cobenefits from protecting burned Amazon forests from recurrent fire. By contrast, soundscape changes after logging were subtle and more consistent with acoustic community recovery than reassembly. In both logged and burned forests, insects were the dominant acoustic markers of degradation, particularly during midday and nighttime hours, which are not typically sampled by traditional biodiversity field surveys. The acoustic fingerprints of degradation history were conserved across replicate recording locations, indicating that soundscapes may offer a robust, taxonomically inclusive solution for digitally tracking changes in acoustic community composition over time.  more » « less
Award ID(s):
1632976
PAR ID:
10322873
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
18
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frontier forests in the Brazilian Amazon have been heavily altered by nearly a half-century of deforestation for agriculture and degradation from fire and logging. The long-term effects of forest degradation on habitat structure and habitat use remain poorly understood, largely due to the limitations of traditional field methods for characterizing heterogeneity at relevant spatial and temporal scales. This work demonstrates the opportunity to assess degradation impacts on ecosystem structure and biodiversity at landscape scales (200 km2) by combining airborne lidar and acoustic remote sensing across two municipalities in Mato Grosso, Feliz Natal and Nova Ubiratã. Among degradation classes, our results indicate that repeated fire events have the most destructive legacy for both habitat structure and habitat use. Lidar analyses reveal that repeated fire events can result in a total loss of original canopy trees. Similarly, our acoustic analyses suggest that repeated fires may fundamentally transform animal community composition. The combination of remote sensing approaches bridges the scale gap between ground-based and satellite observations to support a regional-scale investigation into the complex consequences of Amazon forest degradation. 
    more » « less
  2. Amazon forests are becoming increasingly vulnerable to disturbances such as droughts, fires, windstorms, logging, and forest fragmentation, all of which lead to forest degradation. Nevertheless, quantifying the extent and severity of disturbances and their cumulative impact on forest degradation remains a significant challenge. In this study, we combined multispectral data from Landsat sensors with hyperspectral data from the Earth Observing-One (Hyperion/EO-1) sensor to evaluate the efficacy of multiple vegetation indices in detecting forest responses to disturbances in an experimentally burned forest in southeastern Amazonia. Our experimental area was adjacent to an agricultural field and consisted of three 50-ha treatments – an unburned Control, a plot burned every three years, and a plot burned annually from 2004 to 2010. All plots were monitored to assess vegetation recovery after fire disturbance. These areas were also affected by three drought events (2007, 2010, and 2016) over the study period. We evaluated a total of 18 Vegetation Indices (VI), one unique to Landsat, 12 unique to Hyperion/EO-1, and five commons to both satellites (i.e., 6 total from Landsat and 17 from Hyperion). We used linear models (LM) to evaluate how changes in ground observations of forest structure (biomass, leaf area index [LAI], and litter production) associated with fire were captured by the two VIs most sensitive to forest degradation. Our results indicate that the Plant Senescence Reflectance Index (PSRI) derived from Hyperion/EO-1 was the most sensitive to vegetation changes associated with forest fires, increasing by 94% in burned vs. unburned forests. Of the Landsat-derived VIs, we found that the Green-Red Normalized Difference (GRND) were the most sensitive to forest degradation by fire, showing a marked decline (87%) in the burned plots compared with the unburned Control. However, compared to PSRI, the GRND was a better predictor of changes associated with fire, both in the forest interior or forest edge, for the three ground variables: biomass stocks (r2 =0.5–0.8), LAI (r2=0.8–0.9), and litter production (r2=0.4–0.7). This study demonstrate that VIs can detect forest responses to fire and other disturbances over time, highlighting the relative strengths of each VI. In doing so, it shows how the integration of multispectral and hyperspectral data can be useful for monitoring tropical forest degradation and recovery. Moreover, it provides valuable insights into the limitations of existing approaches, which can inform the design of next-generation sensors for global forest monitoring. 
    more » « less
  3. While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years. We also assessed how stem-level growth and mortality were influenced by fire intensity (proxied by char height) and tree morphological traits (size and wood density). Overall, the burned forest lost 27.3% of stem density and 12.8% of biomass, concentrated in small and medium trees. Mortality drove these losses in the first 2 years and recruitment decreased in the third year. The fire increased growth in lower wood density and larger sized trees, while char height had transitory strong effects increasing tree mortality. Our findings suggest that fire impacts are weaker in the wetter Amazon. Here, trees of greater sizes and higher wood densities may confer a margin of fire resistance; however, this may not extend to higher intensity fires arising from climate change. 
    more » « less
  4. null (Ed.)
    Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with an increased density of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages. 
    more » « less
  5. Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites, whereas untreated burned sites had an average of 27 ± 7.68 cavities per hectare. Correspondingly, we found almost double the avian species richness in untreated burned sites compared to treated burned sites (22 species versus 12 species). Unburned forests and untreated burned areas had the same species richness, but hosted unique avian communities. Our results indicate conflicting outcomes with respect to management objectives, most evident in the clear costs to habitat conservation following post-fire management application. 
    more » « less