Abstract Understanding how tropical forests respond to abiotic environmental changes is critical for preserving biodiversity, mitigating climate change, and maintaining ecosystem services in the coming century. To evaluate the relative roles of the abiotic environment and human disturbance on Central African tree community composition, we employ tree inventory data, remotely sensed climatic data, and soil nutrient data collected from 30 1‐ha plots distributed across a large‐scale observational experiment in forests that had been differently impacted by logging and hunting in northern Republic of Congo. We show that the composition of Afrotropical plant communities at this scale responds to human disturbance more than to climate, with particular sensitivities to hunting and distance to the nearest village (a proxy for other human activities, including tree‐cutting and gathering). These findings contrast neotropical predictions, highlighting the unique ecological, evolutionary, and anthropogenic history of Afrotropical forests. 
                        more » 
                        « less   
                    
                            
                            From town to national park: Understanding the long-term effects of hunting and logging on tree communities in Central Africa
                        
                    
    
            Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with an increased density of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1845649
- PAR ID:
- 10294268
- Date Published:
- Journal Name:
- Forest ecology and management
- Volume:
- 499
- ISSN:
- 0378-1127
- Page Range / eLocation ID:
- 119571
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Background and AimsUnderstanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. MethodsWe analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. Key ResultsThe previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. ConclusionsOur study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.more » « less
- 
            null (Ed.)Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.more » « less
- 
            Safeguarding tropical forest biodiversity requires solutions for monitoring ecosystem structure over time. In the Amazon, logging and fire reduce forest carbon stocks and alter habitat, but the long-term consequences for wildlife remain unclear, especially for lesser-known taxa. Here, we combined multiday acoustic surveys, airborne lidar, and satellite time series covering logged and burned forests ( n = 39) in the southern Brazilian Amazon to identify acoustic markers of forest degradation. Our findings contradict expectations from the Acoustic Niche Hypothesis that animal communities in more degraded habitats occupy fewer “acoustic niches” defined by time and frequency. Instead, we found that aboveground biomass was not a consistent proxy for acoustic biodiversity due to the divergent patterns of “acoustic space occupancy” between logged and burned forests. Ecosystem soundscapes highlighted a stark, and sustained reorganization in acoustic community assembly after multiple fires; animal communication networks were quieter, more homogenous, and less acoustically integrated in forests burned multiple times than in logged or once-burned forests. These findings demonstrate strong biodiversity cobenefits from protecting burned Amazon forests from recurrent fire. By contrast, soundscape changes after logging were subtle and more consistent with acoustic community recovery than reassembly. In both logged and burned forests, insects were the dominant acoustic markers of degradation, particularly during midday and nighttime hours, which are not typically sampled by traditional biodiversity field surveys. The acoustic fingerprints of degradation history were conserved across replicate recording locations, indicating that soundscapes may offer a robust, taxonomically inclusive solution for digitally tracking changes in acoustic community composition over time.more » « less
- 
            Human-altered disturbance regimes and changing climatic conditions can reduce seed availability and suitable microsites, limiting seedling regeneration in recovering forest systems. Thus, resprouting plants, which can persist in situ, are expected to expand in dominance in many disturbance-prone forests. However, resprouters may also be challenged by changing regimes, and the mechanisms determining facultative seedling recruitment by resprouting species, which will determine both the future spread and current persistence of these populations, are poorly understood. In the resprouter-dominated forests of coastal California, interactions between wildfire and an emerging disease, sudden oak death (SOD), alter disturbance severity and tree mortality, which may shift forest regeneration trajectories. We examine this set of compound disturbances to (1) assess the influence of seed limitation, biotic competition, and abiotic conditions on seedling regeneration in resprouting populations; (2) investigate whether disease-fire interactions alter postfire seedling regeneration, which have implications for future disease dynamics and shifts in forest composition. Following a wildfire that impacted a preexisting plot network in SOD-affected forests, we monitored seedling abundances and survival over eight years. With pre- and postfire data, we assessed relationships between regeneration dynamics and disturbance severity, biotic, and abiotic variables, using Bayesian generalized linear models and mixed models. Our results indicate that postfire seedling regeneration by resprouting species was shaped by contrasting mechanisms reflecting seed limitation and competitive release. Seedling abundances declined with decreasing postfire survival of mature, conspecific stems, while belowground survival of resprouting genets had no effect. However, where seed sources persisted, seedling abundances and survival generally increased with the prefire severity of disease impacts, suggesting that decreased competition with adults may enhance seedling recruitment in this resprouter-dominated system. Species’ regeneration responses varied with their relative susceptibility to SOD and suggest compositional shifts, which will determine future disease management and forest restoration actions. These results additionally highlight that mechanisms related to biotic competition, seed limitation, and opportunities for seedling recruitment beneath mature canopies may determine possible shifts in the occurrence of resprouting traits. This result has broad applications to other systems impacted by human-altered regimes where asexual persistence may be predicted to be a beneficial life history strategy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    