skip to main content


Title: Photo-liberated amines for N -carboxyanhydride (PLANCA) ring-opening polymerization
The polymerization of N -carboxyanhydrides (NCAs) affords access to a vast array of synthetic polypeptides with tunable molecular weights, functionalities, and architectures. The use of light to achieve spatiotemporal control over these polymerizations could expand their applicability to a variety of areas, including 3D printing and photolithography. In this report we utilized 2-(2-nitrophenyl)propyloxycarbonyl (NPPOC) as a photoprotecting group to cage a primary amine initiator that is activated upon UV irradiation. NPPOC photocages underwent quantitative deprotection and afforded better polymerization control compared to previously reported photocaged amines for NCA polymerizations. Furthermore, the addition of a small equivalence of base enhanced the control and resulted in polymers with lower dispersities. Overall, this method advances photo-controlled polypeptide synthesis by demonstrating high chain-end fidelity, efficient chain extension, and the ability to synthesize block copolymers.  more » « less
Award ID(s):
1904631
NSF-PAR ID:
10322882
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
28
ISSN:
1759-9954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent developments in photocontrolled polymerizations have facilitated the development of previously inaccessible materials. While photocontrolled radical polymerizations have been extensively studied, related processes involving cationic polymerizations are underexplored and limited to RAFT processes. In this study, we disclose a visible light, temporally controlled cationic polymerization of vinyl ethers utilizing thioacetals and a photoredox catalyst. We demonstrate a broad scope of thioacetal initiators that achieve a well-controlled polymerization by recapping propagating chains via photocatalyst turnover in combination with a degenerate chain transfer process through sulfonium intermediates. Furthermore, we show that a photocatalyst with a more reducing ground state reduction potential allows for enhanced control and excellent temporal regulation of polymerization. 
    more » « less
  2. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less
  3. null (Ed.)
    Photoinduced-RAFT polymerization is a technique of increasing interest due to the combination of control over polymerization that RAFT processes afford with the mild reaction conditions and spatial and temporal control of photochemical processes. Iniferter RAFT polymerization is an interesting subclass of photoinduced-RAFT that eliminates the need for an added photocatalyst, as the RAFT agent is directly excited by the photon source. Iniferter RAFT is a photochemical process leading to carbon–sulfur bond homolysis. In this work we find a surprising effect of substituents on the dithiobenzoate moiety of the chain transfer agent (CTA). Donating groups dramatically accelerate the iniferter process, while withdrawing groups retard the reaction substantially. This is interpreted though electrochemistry, since homolysis of the carbon–sulfur bond is associated with a formal oxidation of the thiocarbonylthio groups and reduction of the carbon to a radical. Through this study, the unique efficiency of 2-cyano-2-propyl 4-methoxydithiobenzoate (CPMODB) as an iniferter was uncovered, as this polymerization was found to progress at a drastically enhanced rate, even when compared to similar tris[2-phenylpyridinato-C 2 , N ]iridium( iii ) photocatalyzed polymerizations using an unsubstituted dithiobenzoate RAFT agent. 
    more » « less
  4. Abstract

    Reversible addition‐fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups ‐ while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra‐high molecular weight polymers, polymerization induced self‐assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non‐toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.

     
    more » « less
  5. Abstract

    Gaining temporal control over chain growth is a key challenge in the enhancement of controlled living polymerizations. Though research on photocontrolled polymerizations is still in its infancy, it has already proven useful in the development of previously inaccessible materials. Photocontrol has now been extended to cationic polymerizations using 2,4,6‐triarylpyrylium salts as photocatalysts. Despite the ability to stop polymerization for a short time, monomer conversion was observed over long dark periods. Improved catalyst systems based on Ir complexes give optimal temporal control over chain growth. The excellent stability of these complexes and the ability to tune the excited and ground state redox potentials to regulate the number of monomer additions per cation formed allows polymerization to be halted for more than 20 hours. The excellent stability of these iridium catalysts in the presence of more nucleophilic species enables chain‐end functionalization of these polymers.

     
    more » « less