Current families of reversible photochemical reactions present challenges for light‐controlled polymers of either photostationary states, which are common in photoinduced cycloaddition/cycloreversion reactions, or exclusively intramolecular bond changes, which characterize most photochromic units. In response to these challenges, here the concept of “proximal photocleavage” is presented, which combines photochemical crosslinking with a photocleavable linker, enabling a one‐time bond formation/cleavage sequence. Proximal photocleavage methacrylate monomers comprising, in series along the pendant of the methacrylate, a coumarin unit for crosslinking and either a phenacyl or ortho‐nitrobenzyl photocleavable group for decrosslinking are reported. The photophysical properties of these monomers and their statistical copolymers with methyl methacrylate are described, and wavelength selective crosslinking and de‐crosslinking of thin polymer films are demonstrated. 
                        more » 
                        « less   
                    
                            
                            Mediating covalent crosslinking of single-chain nanoparticles through solvophobicity in organic solvents
                        
                    
    
            We describe the photoinduced intrachain crosslinking of coumarin-containing copolymers in various organic solvents. Analysis of copolymer solvation and comparison to a molecular coumarin derivative revealed solvophobicity-driven crosslinking kinetics and chain compaction that facilitated the synthesis of single-chain nanoparticles. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1904631
- PAR ID:
- 10322888
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 12
- Issue:
- 31
- ISSN:
- 1759-9954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Covalent adaptable networks (CANs) based on the thiol–Michael (TM) linkages can be thermal and pH responsive. Here, a new vinyl‐sulfone‐based thiol–Michael crosslinker is synthesized and incorporated into acrylate‐based CANs to achieve stable materials with dynamic properties. Because of the reversible TM linkages, excellent temperature‐responsive re‐healing and malleability properties are achieved. In addition, for the first time, a photoresponsive coumarin moiety is incorporated with TM‐based CANs to introduce light‐mediated reconfigureability and postpolymerization crosslinking. Overall, these materials can be on demand dynamic in response to heat and light but can retain mechanical stability at ambient condition.more » « less
- 
            Chain exchange behaviors in self-assembled block copolymer (BCP) nanoparticles (NPs) at room temperature are investigated through observations of structural differences between parent and binary systems of BCP NPs with and without crosslinked domains. Pairs of linear diblock or triblock, and branched star-like polystyrene-poly(2-vinylpyridine) (PS-PVP) copolymers that self-assemble in a PVP-selective mixed solvent into BCP NPs with definite differences in size and self-assembled morphology are combined by diverse mixing protocols and at different crosslinking densities to reveal the impact of chain exchange between BCP NPs. Clear structural evolution is observed by dynamic light scattering and AFM and TEM imaging, especially in a blend of triblock + star copolymer BCP NPs. The changes are ascribed to the chain motion inherent in the dynamic equilibrium, which drives the system to a new structure, even at room temperature. Chemical crosslinking of PVP corona blocks suppresses chain exchange between the BCP NPs and freezes the nanostructures at a copolymer crosslinking density (CLD) of ∼9%. This investigation of chain exchange behaviors in BCP NPs having architectural and compositional complexity and the ability to moderate chain motion through tailoring the CLD is expected to be valuable for understanding the dynamic nature of BCP self-assemblies and diversifying the self-assembled structures adopted by these systems. These efforts may guide the rational construction of novel polymer NPs for potential use, for example, as drug delivery platforms and nanoreactors.more » « less
- 
            Smart, multi-stimuli-responsive nanogels that possess dynamic covalent bonds (DCBs) exhibit reversibility under equilibrium conditions allowing for controlled disassembly and release of cargo. These nanomaterials have innumerable applications in areas including drug delivery, sensors, soft actuators, smart surfaces, and environmental remediation. In this work, we implement one-pot, photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA), mediated by UV light (λ = 365 nm) and parts per million (ppm) levels (ca. <20 ppm) of a copper(II) bromide catalyst, to fabricate dual crosslinked, polymeric nanogels with tunable orthogonal reversible covalent (TORC-NGs) core-crosslinks (CCLs). These TORC-NGs were crosslinked efficiently via coumarin photodimerization which occured simultaneously during polymerization using coumarin-functionalized methacrylate crosslinkers (CouMA). At the same time, crosslinking of nanocarriers with N,N-cystamine bismethacrylamide (CBMA) introduced orthogonal, redox-responsive, disulfide CCLs. Furthermore, incorporation of poly(glycidyl methacrylate) (PGMA) core-forming segments provided a simple handle for switchable solubility through acid-catalyzed ring-opening hydrolysis of pendant epoxide groups. In this way, the kinetics of release were tailored by the pH of the surrounding media. Thus, these TORC-NG systems showed coupled pH-, redox- and photo-responsive controlled release and disassembly behavior with full release of cargo only observed in the right sequence of stimuli and only when all three are utilized. The multi-stimuli-responsive nature of these TORC-NGs was successfully utilized herein for the controlled encapsulation and on-demand AND-gate release of hydrophobic Nile Red fluorescent reporters used as drug simulants. Various TORC-NG morphologies were synthesized in this report including nanosphere, worm-like and tubesome NGs showing variable release characteristics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    