skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Multi-responsive nanogels with tunable orthogonal reversible covalent (TORC) core-crosslinks for AND-gate controlled release
Smart, multi-stimuli-responsive nanogels that possess dynamic covalent bonds (DCBs) exhibit reversibility under equilibrium conditions allowing for controlled disassembly and release of cargo. These nanomaterials have innumerable applications in areas including drug delivery, sensors, soft actuators, smart surfaces, and environmental remediation. In this work, we implement one-pot, photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA), mediated by UV light (λ = 365 nm) and parts per million (ppm) levels (ca. <20 ppm) of a copper(II) bromide catalyst, to fabricate dual crosslinked, polymeric nanogels with tunable orthogonal reversible covalent (TORC-NGs) core-crosslinks (CCLs). These TORC-NGs were crosslinked efficiently via coumarin photodimerization which occured simultaneously during polymerization using coumarin-functionalized methacrylate crosslinkers (CouMA). At the same time, crosslinking of nanocarriers with N,N-cystamine bismethacrylamide (CBMA) introduced orthogonal, redox-responsive, disulfide CCLs. Furthermore, incorporation of poly(glycidyl methacrylate) (PGMA) core-forming segments provided a simple handle for switchable solubility through acid-catalyzed ring-opening hydrolysis of pendant epoxide groups. In this way, the kinetics of release were tailored by the pH of the surrounding media. Thus, these TORC-NG systems showed coupled pH-, redox- and photo-responsive controlled release and disassembly behavior with full release of cargo only observed in the right sequence of stimuli and only when all three are utilized. The multi-stimuli-responsive nature of these TORC-NGs was successfully utilized herein for the controlled encapsulation and on-demand AND-gate release of hydrophobic Nile Red fluorescent reporters used as drug simulants. Various TORC-NG morphologies were synthesized in this report including nanosphere, worm-like and tubesome NGs showing variable release characteristics.  more » « less
Award ID(s):
2125727
PAR ID:
10536438
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Polymer Chemistry
Volume:
14
Issue:
44
ISSN:
1759-9954
Page Range / eLocation ID:
4957 to 4969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tumor microenvironment responsive drug delivery systems are potential approaches to reduce the acute toxicity caused by high-dose cancer chemotherapy. Notwithstanding the conventional nano-drug delivery systems, the redox and pH stimuli drug delivery systems are currently gaining attention. Therefore, the current study was designed to compare three different covalent carbon dots (C-dots) systems based on doxorubicin (dox) release profiles and cancer cell viability efficacy under acidic and physiological conditions. The C-dots nanosystems that were examined in this study are directly conjugated (C-dots-dox), pH triggered (C-dots-HBA-dox), and the redox stimuli (C-dots-S–S-dox) conjugates. The drug loading content (DLC%) of the C-dots-S–S-dox, C-dots-HBA-dox, and C-dots-dox was 34.2 ± 0.4, 60.0 ± 0.3, and 70.0 ± 0.2%, respectively, that examined by UV-vis spectral analysis. The dox release paradigms were emphasized that all three conjugates were promisingly released the dox from C-dots faster in acidic pH than in physiological pH. The displayed highest dox released percentage in the acidic medium was 74.6 ± 0.8% obtained by the pH stimuli, C-dots-HBA-dox conjugate. When introducing the redox inducer, dithiothreitol (DTT), preferentially, the redox stimuli C-dot-S–S-dox conjugate demonstrated a faster dox release at acidic pH than in the pH 7.4. The SJGBM2 cell viability experiments revealed that the pH stimuli, C-dots-HBA-dox conjugate, displayed a significant cell viability drop in the artificially acidified pH 6.4 medium. However, in the physiological pH, the redox stimuli, C-dots-S–S-dox conjugate, was promising over the pH stimuli C-dots-HBA-dox, exhibiting cell viability of 60%, though its’ efficacy dropped slightly in the artificially acidified pH 6.4 medium. Moreover, the current study illustrates the stimuli conjugates’ remarkable efficacy on sustain drug release than direct amide linkage. 
    more » « less
  2. null (Ed.)
    A one pot synthesis is applied to control the chain structure and architecture of multiply dynamic polymers, enabling fine tuning of materials properties by choice of polymer chain length or crosslink density. Macromolecules containing both non-covalent linkers based on quadruple hydrogen-bonded 2-(((6-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)hexyl)carbamoyl)oxy)ethyl methacrylate (UPyMA), and thermoresponsive dynamic covalent furan–maleimide based Diels–Alder linkers are explored. The primary polymer's architecture was controlled by reversible addition-fragmentation chain transfer (RAFT) polymerization, with the dynamic non-covalent (UPyMA) and dynamic covalent furfuryl methacrylate (FMA) units incorporated into the same backbone. The materials are crosslinked, taking advantage of the “click” chemistry properties of the furan–maleimide reaction. The polymer materials showed stimulus-responsive thermomechanical properties with a decrosslinking temperature increasing with the polymer's primary chain length and crosslink density. The polymers had good thermally promoted self-healing properties due to the dynamic covalent Diels–Alder bonds. Besides, the materials had excellent stress relaxation characteristics induced by the exchange of the hydrogen bonds in UPyMA units. 
    more » « less
  3. Dynamic optical modulation in response to stimuli provides exciting opportunities for designing novel sensing, actuating, and authentication devices. Here, we demonstrate that the reversible swelling and deswelling of crosslinked polymer colloidal spheres in response to pH and temperature changes can be utilized to drive the assembly and disassembly of the embedded gold nanoparticles (AuNPs), inducing their plasmonic coupling and decoupling and, correspondingly, color changes. The multi‐responsive colloids are created by depositing a monolayer of AuNPs on the surface of resorcinol‐formaldehyde (RF) nanospheres, then overcoating them with an additional RF layer, followed by a seeded growth process to enlarge the AuNPs and reduce their interparticle separation to induce significant plasmonic coupling. This configuration facilitates dynamic modulation of plasmonic coupling through the reversible swelling/deswelling of the polymer spheres in response to pH and temperature changes. The rapid and repeatable transitions between coupled and decoupled plasmonic states of AuNPs enable reversible color switching when the polymer spheres are in colloidal form or embedded in hydrogel substrates. Furthermore, leveraging the photothermal effect and stimuli‐responsive plasmonic coupling of the embedded AuNPs enables the construction of hybrid hydrogel films featuring switchable anticounterfeiting patterns, showcasing the versatility and potential of this multi‐stimuli‐responsive plasmonic system. 
    more » « less
  4. Bridging the current gap between the precision and efficiency demonstrated by natural systems and synthetic materials requires interfacing and independently controlling multiple stimuli-responsive building blocks in a single platform. The mentioned orthogonal control over material properties (i.e., the ability to selectively activate one stimuli-responsive moiety without affecting another) could pave the way for a multitude of applications, including logic-gated optoelectronics, on-demand drug delivery platforms, and molecular shuttles, for example. In this Review, we highlight the recent successful strategies to achieve orthogonal control over material properties using a combination of stimuli-responsive building blocks and multiple independent stimuli. We begin by surveying the fundamental studies of multi-stimuli-responsive systems, which utilize a variety of stimuli to activate a single stimuli-responsive moiety (e.g., spiropyran, diarylethene, or dihydroazulene derivatives), because these studies lay the foundation for the design of systems containing more than one independently controlled fragment. As a next step, we overview the emerging field focusing on systems which are composed of more than one unique stimuli-responsive unit that can respond to independent stimuli, including distinct excitation wavelengths, or a combination of light, heat, pH, potential, or ionic strength. Recent advances clearly demonstrate how strategic coupling of orthogonally controlled stimuli-responsive units can allow for selective modulation of a range of material properties, such as conductivity, catalytic performance, and biological activity. Thus, the highlighted studies foreshadow the emerging role of materials with orthogonally controlled properties to impact the next generation of photopharmacology, nanotechnology, optoelectronics, and biomimetics. 
    more » « less
  5. Abstract Dynamic microcapsules are reported that exhibit shell membranes with fast and reversible changes in permeability in response to external stimuli. A hydrophobic anhydride monomer is employed in the thiol–ene polymerization as a disguised precursor for the acid‐containing shells; this enables the direct encapsulation of aqueous cargo in the liquid core using microfluidic fabrication of water‐in‐oil‐in‐water double emulsion drops. The poly(anhydride) shells hydrolyze in their aqueous environment without further chemical treatment, yielding cross‐linked poly(acid) microcapsules that exhibit trigger‐responsive and reversible property changes. The microcapsule shell can actively be switched numerous times between impermeable and permeable due to the exceptional mechanical properties of the thiol–ene network that prevent rupture or failure of the membrane, allowing it to withstand the mechanical stresses imposed on the capsule during the dynamic property changes. The permeability and molecular weight cutoff of the microcapsules can dynamically be controlled with triggers such as pH and ionic environment. The reversibly triggered changes in permeability of the shell exhibit a response time of seconds, enabling actively adjustable release profiles, as well as on‐demand capture, trapping, and release of cargo molecules with molecular selectivity and fast on‐off rates. 
    more » « less