mmWave is emerging as an essential technology for next-generation wireless networks due to its capability of delivering multi-gigabit throughput performance. To achieve such a promising performance in mmWave communications, Line-of-sight (LOS) connectivity is a critical requirement. In this work, we explore the strategy of infrastructure mobility to alter the location of an access point (AP) in order to provide LOS connectivity to stations (STAs) in indoor mmWave WiFi networks. Through both simulation-based and theoretical analyses, we make a detailed case for infrastructure mobility by identifying the impact of AP mobile platforms configurations on network performance and propose a ceiling-mounted mobile (CMM) AP model. Then, we compare the performance of a CMM AP with multiple static APs, and we identify that the throughput and fairness performance of a CMM AP is better than as many as 5 ceiling-mounted static APs.
more »
« less
WiMove: Toward Infrastructure Mobility in mmWave WiFi
Line-of-sight (LOS) is a critical requirement for mmWave wireless communications. In this work, we explore the use of access point (AP) infrastructure mobility to optimize indoor mmWave WiFi network performance based on the discovery of LOS connectivity to stations (STAs).We consider a ceiling-mounted mobile (CMM) AP as the infrastructure mobility framework. Within this framework, we present a LOS prediction algorithm based on machine learning (ML) that addresses the LOS discovery problem. The algorithm relies on the available network state information (e.g., LOS connectivity between STAs and the AP) to predict the unknown LOS connectivity status between the reachable AP locations and target STAs. We show that the proposed algorithm can predict LOS connectivity between the AP and target STAs with an accuracy up to 91%. Based on the LOS prediction algorithm, we then propose a systematic solution WiMove, which can decide if and where the AP should move to for optimizing network performance. Using both ns-3 based simulation and experimental prototype implementation, we show that the throughput and fairness performance of WiMove is up to 119% and 15% better compared with single static AP and brute force search.
more »
« less
- Award ID(s):
- 1813242
- PAR ID:
- 10322927
- Date Published:
- Journal Name:
- ACM Symposium on Mobility Management and Wireless Access
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Millimeter-wave communication is a highly promising technology to deliver multi-gigabit-per-second transmission rates for next-generation wireless LANs (WLANs). To achieve such ultra-high throughput performance in indoor scenarios, line-of-sight (LoS) connectivity becomes a critical requirement. Prior work has proposed access point (AP) mobility as an approach to improve LoS conditions and, thereby, approach optimum mmWave WLAN performance. In this work, we present a comprehensive simulation study of linear AP mobility that investigates various dimensions, including the number of mobile APs, the placement of the mobile AP platforms, and the length of the platforms. The results show how WLAN performance varies across these dimensions and also compares the results against a varying number of static APs to quantity the performance gains achievable from mobility. The results show that even 2 or 3 mobile APs can significantly outperform a much larger number of static APs and that deploying up to 3 mobile APs in a room brings substantial performance gains.more » « less
-
mmWave communication in 60GHz band has been recognized as an emerging technology to support various bandwidth-hungry applications in indoor scenarios. To maintain ultra-high throughputs while addressing potential blockage problems for mmWave signals, maintaining line-of-sight (LoS) communications between client devices and access points (APs) is critical. To maximize LoS communications, one approach is to deploy multiple APs in the same room. In this paper, we investigate the optimal placement of multiple APs using both analytical methods and simulations. Considering the uncertainty of obstacles and clients, we focus on two typical indoor settings: random-obstacle-random-client (RORC) scenarios and fixed-obstacle-random-client (FORC) scenarios. In the first case, we analytically derive the optimal positions of APs by solving a thinnest covering problem. This analytical result is used to show that deploying up to 5 APs in a specific room brings substantial performance gains. For the FORC scenario, we propose the shadowing-elimination search (SES) algorithm based on an analytic model to efficiently determine the placement of APs. We show, through simulations, that with only a few APs, the network can achieve blockage-free operation in the presence of multiple obstacles and also demonstrate that the algorithm produces near-optimal deployments. Finally, we perform ns-3 simulations based on the IEEE 802.11ad protocol at mmWave frequency to validate our analytical results. The ns-3 results show that proposed multi-AP deployments produce significantly higher aggregate performance as compared to other common AP placements in indoor scenarios.more » « less
-
The mmWave WiGig frequency band can support high throughput and low latency emerging applications. In this context, accurate prediction of channel gain enables seamless connectivity with user mobility via proactive handover and beamforming. Machine learning techniques have been widely adopted in literature for mmWave channel prediction. However, the existing techniques assume that the indoor mmWave channel follows a stationary stochastic process. This paper demonstrates that indoor WiGig mmWave channels are non-stationary where the channel’s cumulative distribution function (CDF) changes with the user’s spatio-temporal mobility. Specifically, we show significant differences in the empirical CDF of the channel gain based on the user’s mobility stage, namely, room entering, wandering, and exiting. Thus, the dynamic WiGig mmWave indoor channel suffers from concept drift that impedes the generalization ability of deep learning-based channel prediction models. Our results demonstrate that a state-of-the-art deep learning channel prediction model based on a hybrid convolutional neural network (CNN) long-short-term memory (LSTM) recurrent neural network suffers from a deterioration in the prediction accuracy by 11–68% depending on the user’s mobility stage and the model’s training. To mitigate the negative effect of concept drift and improve the generalization ability of the channel prediction model, we develop a robust deep learning model based on an ensemble strategy. Our results show that the weight average ensemble-based model maintains a stable prediction that keeps the performance deterioration below 4%.more » « less
-
In this paper, we investigate the design of high throughput relay-assisted millimeter-wave (mmWave) backhaul networks in urban areas. Different from most related works, we consider the deployment of dedicated simple mmWave relay devices to help enhance the line-of-sight (LoS) connectivity of the backhaul network in urban areas with abundant obstacles. Given a set of (logical) backhaul links between base stations in the network, we propose an algorithm to find high-throughput LoS paths with relays for all logical links by minimizing interference within and between paths. We also propose methods to modify the backhaul topology to increase the probability of finding high-throughput paths using our algorithm. Extensive simulations, based on a 3-D model of a section of downtown Atlanta, demonstrate that high-throughput topologies, with minimal inter-path and intra-path interference, are feasible in most cases. The analyses also yield some insights on the mmWave backhaul network design problem.more » « less
An official website of the United States government

