skip to main content


Title: UniPose+: A unified framework for 2D and 3D human pose estimation in images and videos
We propose UniPose+, a unified framework for 2D and 3D human pose estimation in images and videos. The UniPose+ architecture leverages multi-scale feature representations to increase the effectiveness of backbone feature extractors, with no significant increase in network size and no postprocessing. Current pose estimation methods heavily rely on statistical postprocessing or predefined anchor poses for joint localization. The UniPose+ framework incorporates contextual information across scales and joint localization with Gaussian heatmap modulation at the decoder output to estimate 2D and 3D human pose in a single stage with state-of-the-art accuracy, without relying on predefined anchor poses. The multi-scale representations allowed by the waterfall module in the UniPose+ framework leverage the efficiency of progressive filtering in the cascade architecture, while maintaining multi-scale fields-of-view comparable to spatial pyramid configurations. Our results on multiple datasets demonstrate that UniPose+, with a HRNet, ResNet or SENet backbone and waterfall module, is a robust and efficient architecture for single person 2D and 3D pose estimation in single images and videos.  more » « less
Award ID(s):
1749376
NSF-PAR ID:
10322977
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN:
0162-8828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose UniPose, a unified framework for human pose estimation, based on our “Waterfall” Atrous Spatial Pooling architecture, that achieves state-of-art-results on several pose estimation metrics. Current pose estimation methods utilizing standard CNN architectures heavily rely on statistical postprocessing or predefined anchor poses for joint localization. UniPose incorporates contextual segmentation and joint localization to estimate the human pose in a single stage, with high accuracy, without relying on statistical postprocessing methods. The Waterfall module in UniPose leverages the efficiency of progressive filtering in the cascade architecture, while maintaining multiscale fields-of-view comparable to spatial pyramid configurations. Additionally, our method is extended to UniPoseLSTM for multi-frame processing and achieves state-of-theart results for temporal pose estimation in Video. Our results on multiple datasets demonstrate that UniPose, with a ResNet backbone and Waterfall module, is a robust and efficient architecture for pose estimation obtaining state-ofthe-art results in single person pose detection for both single images and videos 
    more » « less
  2. Tescher, Andrew G. ; Ebrahimi, Touradj (Ed.)
    Vehicle pose estimation is useful for applications such as self-driving cars, traffic monitoring, and scene analysis. Recent developments in computer vision and deep learning have achieved significant progress in human pose estimation, but little of this work has been applied to vehicle pose. We propose VehiPose, an efficient architecture for vehicle pose estimation, based on a multi-scale deep learning approach that achieves high accuracy vehicle pose estimation while maintaining manageable network complexity and modularity. The VehiPose architecture combines an encoder-decoder architecture with a waterfall atrous convolution module for multi-scale feature representation. Our approach aims to reduce the loss due to successive pooling layers and preserve the multiscale contextual and spatial information in the encoder feature representations. The waterfall module generates multiscale features, as it leverages the efficiency of progressive filtering while maintaining wider fields-of-view through the concatenation of multiple features. This multi-scale approach results in a robust vehicle pose estimation architecture that incorporates contextual information across scales and performs the localization of vehicle keypoints in an end-to-end trainable network. 
    more » « less
  3. Recovering multi-person 3D poses and shapes with absolute scales from a single RGB image is a challenging task due to the inherent depth and scale ambiguity from a single view. Current works on 3D pose and shape estimation tend to mainly focus on the estimation of the 3D joint locations relative to the root joint , usually defined as the one closest to the shape centroid, in case of humans defined as the pelvis joint. In this paper, we build upon an existing multi-person 3D mesh predictor network, ROMP, to create Absolute-ROMP. By adding absolute root joint localization in the camera coordinate frame, we are able to estimate multi-person 3D poses and shapes with absolute scales from a single RGB image. Such a single-shot approach allows the system to better learn and reason about the inter-person depth relationship, thus improving multi-person 3D estimation. In addition to this end to end network, we also train a CNN and transformer hybrid network, called TransFocal, to predict the f ocal length of the image’s camera. Absolute-ROMP estimates the 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. We then use TransFocal to obtain focal length and get absolute depth information of all joints in the camera coordinate frame. We evaluate Absolute-ROMP on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets. We evaluate TransFocal on dataset created from the Pano360 dataset and both are applicable to in-the-wild images and videos, due to real time performance. 
    more » « less
  4. We consider the task of 3D pose estimation and tracking of multiple people seen in an arbitrary number of camera feeds. We propose TesseTrack, a novel top-down approach that simultaneously reasons about multiple individuals’ 3D body joint reconstructions and associations in space and time in a single end-to-end learnable framework. At the core of our approach is a novel spatio-temporal formulation that operates in a common voxelized feature space aggregated from single- or multiple camera views. After a person detection step, a 4D CNN produces short-term persons pecific representations which are then linked across time by a differentiable matcher. The linked descriptions are then merged and deconvolved into 3D poses. This joint spatio-temporal formulation contrasts with previous piecewise strategies that treat 2D pose estimation, 2D-to-3D lifting, and 3D pose tracking as independent sub-problems that are error-prone when solved in isolation. Furthermore, unlike previous methods, TesseTrack is robust to changes in the number of camera views and achieves very good results even if a single view is available at inference time. Quantitative evaluation of 3D pose reconstruction accuracy on standard benchmarks shows significant improvements over the state of the art. Evaluation of multi-person articulated 3D pose tracking in our novel evaluation framework demonstrates the superiority of TesseTrack over strong baselines. 
    more » « less
  5. We propose GourmetNet, a single-pass, end-to-end trainable network for food segmentation that achieves state-of-the-art performance. Food segmentation is an important problem as the first step for nutrition monitoring, food volume and calorie estimation. Our novel architecture incorporates both channel attention and spatial attention information in an expanded multi-scale feature representation using our advanced Waterfall Atrous Spatial Pooling module. GourmetNet refines the feature extraction process by merging features from multiple levels of the backbone through the two attention modules. The refined features are processed with the advanced multi-scale waterfall module that combines the benefits of cascade filtering and pyramid representations without requiring a separate decoder or post-processing. Our experiments on two food datasets show that GourmetNet significantly outperforms existing current state-of-the-art methods. 
    more » « less