Abstract Fluidic artificial muscles (FAMs) are a popular actuation choice due to their compliant nature and high force-to-weight ratio. Variable recruitment is a bio-inspired actuation strategy in which multiple FAMs are combined into motor units that can be pressurized sequentially according to load demand. In a traditional ‘fixed-end’ variable recruitment FAM bundle, inactive units and activated units that are past free strain will compress and buckle outward, resulting in resistive forces that reduce overall bundle force output, increase spatial envelope, and reduce operational life. This paper investigates the use of inextensible tendons as a mitigation strategy for preventing resistive forces and outward buckling of inactive and submaximally activated motor units in a variable recruitment FAM bundle. A traditional analytical fixed-end variable recruitment FAM bundle model is modified to account for tendons, and the force–strain spaces of the two configurations are compared while keeping the overall bundle length constant. Actuation efficiency for the two configurations is compared for two different cases: one case in which the radii of all FAMs within the bundle are equivalent, and one case in which the bundles are sized to consume the same amount of working fluid volume at maximum contraction. Efficiency benefits can be foundmore »
Control of a dynamic load emulator for hardware-in-the-loop testing of fluidic artificial muscle bundles
Fluidic artificial muscles (FAMs) have emerged as a viable and popular robotic actuation technique due to their low cost, compliant nature, and high force-to-weight-ratio. In recent years, the concept of variable recruitment has emerged as a way to improve the efficiency of conventional hydraulic robotic systems. In variable recruitment, groups of FAMs are bundled together and divided into individual motor units. Each motor unit can be activated independently, which is similar to the sequential activation pattern observed in mammalian muscle. Previous researchers have performed quasistatic characterizations of variable recruitment bundles and some simple dynamic analyses and experiments with a simple 1- DOF robot arm. We have developed a linear hydraulic characterization testing platform that will allow for the testing of different types of variable recruitment bundle configurations under different loading conditions. The platform consists of a hydraulic drive cylinder that acts as a cyber-physical hardware-in-the-loop dynamic loading emulator and interfaces with the variable recruitment bundle. The desired inertial, damping and stiffness properties of the emulator can be prescribed and achieved through an admittance controller. In this paper, we test the ability of this admittance controller to emulate different inertial, stiffness, and damping properties in simulation and demonstrate that it can more »
- Editors:
- Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Knez, Mato
- Award ID(s):
- 1845203
- Publication Date:
- NSF-PAR ID:
- 10323002
- Journal Name:
- Proc. SPIE 11586, Bioinspiration, Biomimetics, and Bioreplication XI
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biological musculature employs variable recruitment of muscle fibers from smaller to larger units as the load increases. This orderly recruitment strategy has certain physiological advantages like minimizing fatigue and providing finer motor control. Recently fluidic artificial muscles (FAM) are gaining popularity as actuators due to their increased efficiency by employing bio-inspired recruitment strategies such as active variable recruitment (AVR). AVR systems use a multi-valve system (MVS) configuration to selectively recruit individual FAMs depending on the load. However, when using an MVS configuration, an increase in the number of motor units in a bundle corresponds to an increase in the number of valves in the system. This introduces greater complexity and weight. The objective of this paper is to propose, analyze, and demonstrate an orderly recruitment valve (ORV) concept that enables orderly recruitment of multiple FAMs in the system using a single valve. A mathematical model of an ORV-controlled FAM bundle is presented and validated by experiments performed on a proof-of-concept ORV experiment. The modeling is extended to explore a case study of a 1-DOF robot arm system consisting of an electrohydraulic pressurization system, ORV, and a FAM-actuated rotating arm plant and its dynamics are simulated to further demonstrate themore »
-
Variable recruitment fluidic artificial muscle (FAM) bundles consist of multiple FAMs arranged in motor units that are sequentially activated as load demand increases. The conventional configuration of a variable recruitment FAM bundle requires a valve for each motor unit, which is referred to as a multi-valve system (MVS). As each motor unit within the bundle is selectively recruited, this configuration is highly adaptable and flexible in performance. However, as the number of motor units increases, the valve network can become complex and heavy in its design. To decrease complexity and weight, the concept of an orderly recruitment valve (ORV) has been proposed and analyzed. The ORV allows multiple motor units to be controlled using a single valve that recruits and pressurizes all motor units. The ORV concept consists of a spool valve with multiple outlet ports and a motor unit connected to each port. A linear actuator controls the position of the spool, allowing fluid flow into each port in succession. Naturally, de-recruitment happens in reverse order. The objective of the ORV is to strike a balance between performance and compactness of design. The purpose of this paper is to present analytical modeling that can be used to understand themore »
-
This paper investigates the effect of resistive forces within a variable recruitment (VR) bundle actuators during recruitment state transition. Due to their versatility in design, ease of manufacturing, high force-to-weight ratio, and inherent compliance, FAMs have become a favorable actuation method for the robotics research community. Recently, researchers have adapted mammalian muscle topology to construct a multi-chamber FAM bundle actuator, consisting of separate units of actuation called motor units (MUs). These bundle actuators have VR functionality in which one or more MUs are sequentially activated according to the load demand. This activation scheme has been shown to have higher actuator efficiencies as compared to a single equivalent cross-sectional area FAM actuator. A characteristic behavior of VR bundles is the interaction between FAM elements in the bundle. Distinctively during recruitment state transition, inactive/low-pressure FAMs buckle outward and are compressed past its free strain due to the higher strain of fully active FAMs. There exists an onset pressure above which such FAMs need to contribute positively to the overall force output of the bundle. This paper presents a realistic scenario in which MU pressure is controlled by a hydraulic servo valve. As a result, the overall bundle force exhibits a sharp decreasemore »
-
Lakhtakia, Akhlesh ; Martín-Palma, Raúl J. ; Knez, Mato (Ed.)This paper investigates the effect of resistive forces that arise in compressed fluidic artificial muscles (FAMs) within a variable recruitment bundle. Much like our skeletal muscle organs that selectively recruit different number of motor fibers depending on the load demand, a variable recruitment FAM bundle adaptively activates the minimum number of motor units (MUs) to increase its overall efficiency. A variable recruitment bundle may operate in different recruitment states (RSs) during which only a subset of the FAMs within a bundle are activated. In such cases, a difference in strain occurs between active FAMs and inactive/low-pressure FAMs. This strain difference results in the compression of inactive/lowpressure FAMs causing them to exert a resistive force opposing the force output of active FAMs. This paper presents experimental measurements for a FAM for both tensile and compressive regions. The data is used to simulate the overall force-strain space of a variable recruitment bundle for when resistive force effects are neglected and when they are included. Counterintuitively, an initial decrease in bundle free strain is observed when a transition to a higher RS is made due to the presence of resistive forces. We call this phenomenon the free strain gradient reversal of a variablemore »