Understanding HIV transmission is critical to guide the development of prophylactic interventions to prevent infection. We used a nonhuman primate (NHP) model with a synthetic swarm of sequence-tagged variants of SIVmac239 (“SIVmac239X”) and scheduled necropsy during primary infection (days 3 to 14 after challenge) to study viral dynamics and host responses to the establishment and dissemination of infection following vaginal challenge. We demonstrate that local replication was initiated at multiple sites within the female genital tract (FGT), with each site having multiple viral variants. Local replication and spread in the FGT preceded lymphatic dissemination. Innate viral restriction factors were observed but appeared to follow viral replication and were ineffective at blocking initial viral establishment and dissemination. However, major delays were observed in time to dissemination in animals and among different viral variants within the same animal. It will be important to assess how phenotypic differences affect early viral dynamics.
more »
« less
HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread
The female reproductive tract (FRT) is the most common site of infection during HIV transmission to women, but viral remodeling complicates characterization of cells targeted for infection. Here, we report extensive phenotypic analyses of HIV-infected endometrial cells by CyTOF, and use a ‘nearest neighbor’ bioinformatics approach to trace cells to their original pre-infection phenotypes. Like in blood, HIV preferentially targets memory CD4+ T cells in the endometrium, but these cells exhibit unique phenotypes and sustain much higher levels of infection. Genital cell remodeling by HIV includes downregulating TCR complex components and modulating chemokine receptor expression to promote dissemination of infected cells to lymphoid follicles. HIV also upregulates the anti-apoptotic protein BIRC5, which when blocked promotes death of infected endometrial cells. These results suggest that HIV remodels genital T cells to prolong viability and promote viral dissemination and that interfering with these processes might reduce the likelihood of systemic viral spread.
more »
« less
- Award ID(s):
- 1811866
- PAR ID:
- 10323082
- Date Published:
- Journal Name:
- eLife
- Volume:
- 9
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Human immunodeficiency virus (HIV) preferentially infects T-lymphocytes by integrating into host DNA and forming a latent transcriptionally silent provirus. As previously shown, HIV-1 alters migration modes of T-lymphocytes by co-regulating viral gene expression with human C-X-C chemokine receptor-4 (CXCR4). Here, we show that motility of infected T-lymphocytes is cell size dependent. In cell migration assays, migrating cells are consistently larger than non-migrating cells. This effect is drug-treatment independent. The cell size dependent motility observed in a previously generated Jurkat latency model correlates with the motility of primary human CD4+ T-cells containing a modified HIV-1 full-length construct JLatd2GFP. In addition, large migrating T-cells, latently infected with HIV, show a slightly decreased rate of reactivation from latency. these results demonstrate that HIV reactivation is cell migration-dependent, where host cell size acts as a catalyst for altered migration velocity. We believe that host cell size controlled migration uncovers an additional mechanism of cellular controlled viral fate determination important for virus dissemination and reactivation from latency. This observation may provide more insights into viral-host interactions regulating cell migration and reactivation from latency and helps in the design and implementation of novel therapeutic strategies.more » « less
-
Membrane-bound vesicles that are released from cells are increasingly being studied as a medium of intercellular communication, as these act to shuttle functional proteins, such as lipids, DNA, rRNA, and miRNA, between cells during essential physiological processes. Extracellular vesicles (EVs), most commonly exosomes, are consistently produced by virus-infected cells, and they play crucial roles in mediating communication between infected and uninfected cells. Notably, pathophysiological roles for EVs have been established in various viral infections, including human immune deficiency virus (HIV), coronavirus (CoV), and human adenovirus (HAdv). Retroviruses, such as HIV, modulate the production and composition of EVs, and critically, these viruses can exploit EV formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Consequently, EV production has been investigated as a potential tool for the development of improved viral infection diagnostics and therapeutics. This review will summarize our present knowledge of EV–virus relationships, focusing on their known roles in pathophysiological pathways, immunomodulatory mechanisms, and utility for biomarker discovery. This review will also discuss the potential for EVs to be exploited as diagnostic and treatment tools for viral infection.more » « less
-
This study examines the interactions between healthy target cells, infected target cells, virus particles, and immune cells within an HIV model. The model exhibits two equilibrium points: an infection-free equilibrium and an infection equilibrium. Stability analysis shows that the infection-free equilibrium is locally asymptotically stable when R0<1. Further, it is unstable when R0>1. The infection equilibrium is locally asymptotically stable when R0>1. The structural and practical identifiabilities of the within-host model for HIV infection dynamics were investigated using differential algebra techniques and Monte Carlo simulations. The HIV model was structurally identifiable by observing the total uninfected and infected target cells, immune cells, and viral load. Monte Carlo simulations assessed the practical identifiability of parameters. The production rate of target cells (λ), the death rate of healthy target cells (d), the death rate of infected target cells (δ), and the viral production rate by infected cells (π) were practically identifiable. The rate of infection of target cells by the virus (β), the death rate of infected cells by immune cells (Ψ), and antigen-driven proliferation rate of immune cells (b) were not practically identifiable. Practical identifiability was constrained by the noise and sparsity of the data. Analysis shows that increasing the frequency of data collection can significantly improve the identifiability of all parameters. This highlights the importance of optimal data sampling in HIV clinical studies, as it determines the best time points, frequency, and the number of sample points required to accurately capture the dynamics of the HIV infection within a host.more » « less
-
Abstract The HIV reservoir consists of infected cells in which the HIV-1 genome persists as provirus despite effective antiretroviral therapy (ART). Studies exploring HIV cure therapies often measure intact proviral DNA levels, time to rebound after ART interruption, or ex vivo stimulation assays of latently infected cells. This study utilizes barcoded HIV to analyze the reservoir in humanized mice. Using bulk PCR and deep sequencing methodologies, we retrieve 890 viral RNA barcodes and 504 proviral barcodes linked to 15,305 integration sites at the single RNA or DNA molecule in vivo. We track viral genetic diversity throughout early infection, ART, and rebound. The proviral reservoir retains genetic diversity despite cellular clonal proliferation and viral seeding by rebounding virus. Non-proliferated cell clones are likely the result of elimination of proviruses associated with transcriptional activation and viremia. Elimination of proviruses associated with viremia is less prominent among proliferated cell clones. Proliferated, but not massively expanded, cell clones contribute to proviral expansion and viremia, suggesting they fuel viral persistence. This approach enables comprehensive assessment of viral levels, lineages, integration sites, clonal proliferation and proviral epigenetic patterns in vivo. These findings highlight complex reservoir dynamics and the role of proliferated cell clones in viral persistence.more » « less
An official website of the United States government

