skip to main content

Title: Assembled triphenylamine bis -urea macrocycles: exploring photodriven electron transfer from host to guests
Absorption of electronic acceptors in the accessible channels of an assembled triphenylamine (TPA) bis -urea macrocycle 1 enabled the study of electron transfer from the walls of the TPA framework to the encapsulated guests. The TPA host is isoskeletal in all host–guest structures analyzed with guests 2,1,3-benzothiadiazole, 2,5-dichlorobenzoquinone and I 2 loading in single-crystal-to-single-crystal transformations. Analysis of the crystal structures highlights how the spatial proximity and orientation of the TPA host and the entrapped guests influence their resulting photophysical properties and allow direct comparison of the different donor–acceptor complexes. Diffuse reflectance spectroscopy shows that upon complex formation 1·2,5-dichlorobenzoquinone exhibits a charge transfer (CT) transition. Whereas, the 1·2,1,3-benzothiadiazole complex undergoes a photoinduced electron transfer (PET) upon irradiation with 365 nm LEDs. The CT absorptions were also identified with the aid of time dependent density functional theory (TD-DFT) calculations. Cyclic voltammetry experiments show that 2,1,3-benzothiadiazole undergoes reversible reduction within the host–guest complex. Moreover, the optical band gaps of the host 1·2,5-dichlorobenzoquinone (1.66 eV), and host 1·2,1,3-benzothiadiazole (2.15 eV) complexes are significantly smaller as compared to the free host 1 material (3.19 eV). Overall, understanding this supramolecular electron transfer strategy should pave the way towards designing lower band gap inclusion complexes.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1904386 1955768
Publication Date:
NSF-PAR ID:
10323108
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
41
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of acceptor strength on excited state charge‐transfer (CT) and charge separation (CS) in central phenothiazine (PTZ) derived symmetric 1 (PTZ-(TCBD-TPA)2) and asymmetric, 2 (PTZ-(TCBD/DCNQ-TPA)2) push-pull conjugates, in which triphenylamine (TPA) act as end capping and 1,1,4,4–tetracyanobuta–1,3–diene (TCBD) and cyclohexa–2,5–diene–1,4–ylidene–expanded TCBD (DCNQ) act as electron acceptor units is reported. Due to strong push-pull effects, intramolecular charge transfer (ICT) was observed in the ground state extending the absorption into the near-IR region. Electrochemical, spectroelectrochemical and computational studies coupled with energy level calculations predicted both 1 and 2 to be efficient candidates for ultrafast charge transfer. Subsequent femtosecond transient absorption studies along with global target analysis, performed in both polar and nonpolar solvents, confirmed such processes in which the CS was efficient in asymmetric 2 having both TCBD and DCNQ acceptors in polar benzonitrile while in toluene, only charge transfer was witnessed. This work highlights significance of number and strength of electron acceptor entities and the role of solvent polarity in multi-modular push-push systems to achieve ultrafast CS.
  2. We demonstrated ion-mobility spectrometry mass spectrometry (IMS-MS) as a powerful tool for interrogating and preserving selective chemistry including non-covalent and host–guest complexes of m -xylene macrocycles formed in solution. The technique readily revealed the unique favorability of a thiourea-containing macrocycle MXT to Zn 2+ to form a dimer complex with the cation in an off-axis sandwich structure having the Zn–S bonds in a tetrahedral coordination environment. Replacing thiourea with urea generates MXU which formed high-order oligomerization with weak binding interactions to neutral DMSO guests detected at every oligomer size. The self-assembly pathway observed for this macrocycle is consistent with the crystalline assembly. Further transformation of urea into squaramide produces MXS, a rare receptor for probing sulfate in solution. Tight complexes were observed for both monomeric and dimeric of MXS in which HSO 4 − bound stronger than SO 4 2− to the host. The position of HSO 4 − at the binding cavity is a 180° inversion of the reported crystallographic SO 4 2− . The MXS dimer formed a prism-like shape with HSO 4 − exhibiting strong contacts with the 8 amine protons of two MXS macrocycles. By eliminating intermolecular interferences, we detected the low energy structures of MXSmore »with collisional cross section (CCS) matching cis – trans and cis – cis squaramides-amines, both were not observed in crystallization trials. The experiments collectively unravel multiple facets of macrocycle chemistry including conformational flexibility, self-assembly and ligand binding; all in one analysis. Our findings illustrate an inexpensive and widely applicable approach to investigate weak but important interactions that define the shape and binding of macrocycles.« less
  3. Small molecule guests influence the functional properties of supramolecular hydrogels. Molecular-level understanding of such sol-gel compositions and structures is challenging due to the lack of long-range order and inherently heterogeneous sol-gel interface. In this study, insight into the uptake process of biologically relevant small molecules into guanosine-quartet(G4) borate hydrogels is obtained by gel-state magic-angle spinning (MAS) NMR spectroscopy. G4∙K + borate hydrogel can absorb up to 0.3 equivalent of cationic methylene blue (MB) without a significant disruption of the G4 fibrils that make up the gel, whereas the addition of over 0.3 equivalents of MB to the same gel leads to a gel-to-sol transition. The gel-to-sol transition process is characterized ex situ by analyzing and comparing the 1 H and 11 B MAS NMR spectra acquired before and after the MB uptake. In particular, 11 B isotropic chemical shifts and quadrupole interactions were determined by analyzing the 11 B MAS NMR spectra acquired at different magnetic fields, 11.7 T, 14.1 T and 20 T, which enable the different local bonding environments of borate anions in sol- and gel domains to be distinguished and identified. By comparison, uptake of heterocyclic molecules such as adenine, cytosine and 1-methylthymine into G4∙Na + boratemore »hydrogels lead to stiff and clear gels while increasing the solubility of the nucleobases as compared to the solubility of the same compounds in water. G4∙Na + gel can uptake one equiv. of adenine with minimal disruption to the sol-gel framework, thus enhancing the adenine solubility up to an order of magnitude as compared to water. Combined multinuclear ( 1 H, 11 B and 23 Na) NMR spectroscopy analysis and vial inversion tests revealed that the nucleobases are embedded into pores of the sol phase rather than being closely interacting with the G-4 fibrils that make up the gel phase. These results indicate that G-4 hydrogels have potential applications as carrier systems for small molecules. Gel-state MAS NMR spectroscopy can be used to gain insight into host-guest interactions in complex heterogeneous sol-gel systems, which is often difficult to obtain from the conventional techniques such as X-ray scattering, electron microscopy and optical spectroscopy.« less
  4. Statement of Purpose Hybrid nanoparticles in which a polymer is used to stabilize the secondary structure of enzyme provide a means to preserve its activity in non-native environments. This approach is illustrated here with horseradish peroxidase (HRP), an important heme enzyme used in medical diagnostic, biosensing, and biotechnological applications. Polymer chaperones in these polymer-enzyme complex (PEC) nanoparticles can enhance the utility of enzymes in unfavorable environments. Structural analysis of the PECs is a crucial link in the machine-learning driven iterative optimization cycle of polymer synthesis and testing. Here, we discuss the utility of small-angle X-ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) for evaluating PECs. Materials and Methods Six polymers were synthesized by automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization directly in 96-well plates.1 Multiple molar ratios of enzyme:polymer (1:1, 1:5, 1:10, and 1:50) were characterized. HRP was mixed with the polymer and heated to 65 °C for 1 hr to form PECs. Enzyme assay and circular dichroism measurements were performed along with SAXS and QCMD to understand polymer-protein interactions. SAXS data were obtained at NSLS-II beamline 16-ID. Results and Discussion SAXS data were analyzed to determine the radius of gyration (Rg), Porod exponent and pair distancemore »distribution functions (P(r)) (Figure 1). Rg, which corresponds to the size of the PEC nanoparticles, is sensitive to the polydispersity of the solution and does not change significantly in the presence of the polymer GEP1. Notably, the maximal dimension does not change as significantly upon heating to denaturation in the case of the PEC as it does with HRP alone. The effect of denaturation induced by heating seems to depend on the molar ratio of the polymer to enzyme. The Porod exponent, which is related to roughness, decreased from about 4 to 3 upon complexation indicating polymer binding to the enzyme’s surface. These were confirmed by modeling the structures of the HRP, the polymer and the PEC were modeled using DAMMIF/DAMMIN and MONSA (ATSAS software). The changes observed in the structure could be correlated to the measured enzymatic activity. Figure 2 shows the evolution of the PEC when the polymer is deposited onto the enzyme immobilized on Figure 1. P(r) plots for PEC vs. HRP before and after heating, illustrating the increased enzymatic stability due to polymer additives. gold-coated QCM sensors. The plots show the changes in frequency (f) and dissipation (D) with time as HRP is first deposited and is followed by the adsorption of the polymer. Large f and D show that the polymer forms a complex with HRP. Such changes were not observed with negative controls, Pluronics and poly(ethylene glycol). Comparison of the data from free particles in solution with QCM data from immobilized enzymes, shows that the conformation of the complexes in solution and surface-bound HRP could be different. This way, we were able to explore the various states of complex formation under different conditions with different polymers. Figure 2. QCMD data showing the interaction between the immobilized HRP and the polymer. 3rd and 5th harmonics are plotted (blue -f; red-D). Conclusion SAXS and QCMD data show that stabilization of the enzyme activity by inhibiting the unraveling of the secondary structure as seen in size, surface roughness, pair distribution function and percent helicity. Acknowledgment This work was supported by NSF grant 2009942. References [1] Tamasi, M, et al. Adv Intell Syst 2020, 2(2): 1900126.« less
  5. Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 −7 S cm −1 ) compared to 1 (1.6 × 10 −8 S cm −1 ). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5–1.9 eV), indicating the potential of thesemore »materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 −6 S cm −1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.« less