Abstract We define a local homomorphism$$(Q,k)\to (R,\ell )$$to be Koszul if its derived fiber$$R\otimes ^{\mathsf {L}}_Q k$$is formal, and if$$\operatorname {Tor}^{Q}(R,k)$$is Koszul in the classical sense. This recovers the classical definition whenQis a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of$$\mathrm {A}_{\infty }$$-structures on resolutions. We use this machinery to construct universal free resolutions ofR-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of anR-moduleMis often minimal and can be described by a finite amount of data wheneverMandRhave finite projective dimension overQ. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings. 
                        more » 
                        « less   
                    
                            
                            Constructing nonproxy small test modules for the complete intersection property
                        
                    
    
            Abstract A local ring R is regular if and only if every finitely generated R -module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $$\mathsf {D}^{\mathsf f}(R)$$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $$\mathsf {D}^{\mathsf f}(R)$$ is proxy small. In this paper, we study a return to the world of R -modules, and search for finitely generated R -modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10323168
- Publisher / Repository:
- Nagoya Math Journal
- Date Published:
- Journal Name:
- Nagoya Mathematical Journal
- ISSN:
- 0027-7630
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract It is proved that a map $${\varphi }\colon R\to S$$ of commutative Noetherian rings that is essentially of finite type and flat is locally complete intersection if and only if $$S$$ is proxy small as a bimodule. This means that the thick subcategory generated by $$S$$ as a module over the enveloping algebra $$S\otimes _RS$$ contains a perfect complex supported fully on the diagonal ideal. This is in the spirit of the classical result that $${\varphi }$$ is smooth if and only if $$S$$ is small as a bimodule; that is to say, it is itself equivalent to a perfect complex. The geometric analogue, dealing with maps between schemes, is also established. Applications include simpler proofs of factorization theorems for locally complete intersection maps.more » « less
- 
            Let M be a finitely generated Cohen-Macaulay module of codimension m over a Gorenstein Ring R=S/I, where S is a regular ring. We show how to form a quasi-isomorphism ϕ from an R-free resolution of M to the dual of an R-free resolution of M∨:=ExtmR(M,R) using the S-free resolutions of R and M. The mapping cone of ϕ is then a Tate resolution of M, allowing us to compute the maximal Cohen-Macaulay approximation of M. "In the case when R is 0-dimensional local, and M is the residue field, the formula for ϕ becomes a formula for the socle of R generalizing a well-known formula for the socle of a zero-dimensional complete intersection. "When I⊂J⊂S are ideals generated by regular sequences, the R-module M=S/J is called a quasi-complete intersection, and ϕ was studied in detail by Kustin and Şega. We relate their construction to the sequence of `EagonNorthcott'-like complexes originally introduced by Buchsbaum and Eisenbud.more » « less
- 
            This work concerns a map φ : R → S \varphi \colon R\to S of commutative noetherian rings, locally of finite flat dimension. It is proved that the André-Quillen homology functors are rigid, namely, if D n ( S / R ; − ) = 0 \mathrm {D}_n(S/R;-)=0 for some n ≥ 1 n\ge 1 , then D i ( S / R ; − ) = 0 \mathrm {D}_i(S/R;-)=0 for all i ≥ 2 i\ge 2 and φ {\varphi } is locally complete intersection. This extends Avramov’s theorem that draws the same conclusion assuming D n ( S / R ; − ) \mathrm {D}_n(S/R;-) vanishes for all n ≫ 0 n\gg 0 , confirming a conjecture of Quillen. The rigidity of André-Quillen functors is deduced from a more general result about the higher cotangent modules which answers a question raised by Avramov and Herzog, and subsumes a conjecture of Vasconcelos that was proved recently by the first author. The new insight leading to these results concerns the equivariance of a map from André-Quillen cohomology to Hochschild cohomology defined using the universal Atiyah class of φ \varphi .more » « less
- 
            Abstract Tensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modules N with the property that M ⊗ R N has nonzero torsion unless M is very special. An important example of such a module N is the Frobenius power p e R over a complete intersection domain R of characteristic p > 0.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    