Abstract This manuscript describes transfer hydrogenation of bicyclic nitrogen-containing heterocyclic compounds using the immobilized chiral phosphoric acid catalyst (R)-PS-AdTRIP in batch and continuous flow. A significant improvement in enantioselectivities is achieved in continuous flow with a fluidized bed reactor packed with (R)-PS-AdTRIP when the flow rate is increased from 0.2 mL/min to 2.0–2.5 mL/min. The optimized continuous flow conditions consistently provide 4–6% ee higher selectivity than transfer hydrogenation in batch with 2 mol% of (R)-PS-AdTRIP, and are used to generate multiple chiral products with the same fluidized bed reactor.
more »
« less
Continuous production of ultrathin organic–inorganic Ruddlesden–Popper perovskite nanoplatelets via a flow reactor
Because of their enhanced quantum confinement, colloidal two-dimensional Ruddlesden–Popper (RP) perovskite nanosheets with a general formula L 2 [ABX 3 ] n −1 BX 4 stand as a promising narrow-wavelength blue-emitting nanomaterial. Despite ample studies on batch synthesis, for RP perovskites to be broadly applied, continuous synthetic routes are needed. Herein, we design and optimize a flow reactor to continuously produce high-quality n = 1 RP perovskite nanoplatelets. The effects of antisolvent composition, reactor tube length, precursor solution injection rate, and antisolvent injection rate on the morphology and optical properties of the nanoplatelets are systematically examined. Our investigation suggests that flow reactors can be employed to synthesize high-quality L 2 PbX 4 perovskite nanoplatelets ( i.e. , n = 1) at rates greater than 8 times that of batch synthesis. Mass-produced perovskite nanoplatelets promise a variety of potential applications in optoelectronics, including light emitting diodes, photodetectors, and solar cells.
more »
« less
- Award ID(s):
- 1914713
- PAR ID:
- 10323286
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 13
- Issue:
- 30
- ISSN:
- 2040-3364
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.more » « less
-
Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices.more » « less
-
The effects of nanoscale silver (nAg) particles on subsurface microbial communities can be influenced by the presence of biosurfactants, which have been shown to alter nanoparticle surface properties. Batch and column studies were conducted to investigate the influence of rhamnolipid biosurfactant (1–50 mg L −1 ) on the stability and mobility of silver nanoparticles (16 ± 4 nm) in batch reactors and water-saturated columns with three solution chemistries: pH = 4 and dissolved oxygen concentration (DO) = 8.8 mg L −1 , pH = 7 and DO = 8.8 mg L −1 , pH = 7 and DO = 2.0 mg L −1 . In batch studies, the presence of rhamnolipid (2–50 mg L −1 ) reduced nAg dissolution by 83.3–99.1% under all pH and DO conditions. Improved nAg stability was observed when rhamnolipid was present in batch reactors at pH = 7 ± 0.2, where the hydrodynamic diameter remained constant (∼50 nm) relative to rhamnolipid-free controls (increased to >230 nm) in 48 hours. Column experiments conducted at pH 4.0 ± 0.2 demonstrated that co-injection of nAg with rhamnolipid (2, 5 and 50 mg L −1 ) decreased Ag + breakthrough from ∼22% of total applied mass in rhamnolipid-free columns to less than 8.1% in the presence of rhamnolipid and altered the shape of the nAg retention profile from a hyper-exponential to a uniform distribution. Column experiments performed at pH 7.0 ± 0.2 and DO levels of either ∼2.0 or ∼8.8 mg L −1 showed that co-injection of 5 mg L −1 and 50 mg L −1 rhamnolipid increased nAg mass breakthrough by 25–40% and ∼80%, respectively, enhancements in nAg stability and mobility were attributed to rhamnolipid adsorption on nAg surfaces, which effectively slowed the oxidation and thus release of Ag + , and adsorption of rhamnolipid on the porous medium, which competed for nAg attachment sites. These results indicate that the presence of rhamnolipid significantly influenced nAg dissolution and mobility under dynamic flow conditions. A mathematical model based on modified filtration theory (MFT) accurately reproduced nAg transport and retention behavior when aggregation and reaction processes were minimal and when rhamnolipid was present, providing a tool to predict the effects of biosurfactants on nAg transport in porous media.more » « less
-
Abstract Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high‐speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high‐boiling‐point solvents such as n‐methyl‐2‐pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data‐driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr−1with the resulting graphene nanoplatelets being suitable for screen‐printed micro‐supercapacitors. Finally, life cycle assessment reveals that ethanol‐based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.more » « less