Abstract Side‐arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in‐vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous‐flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2‐nanorod supported Rh catalyst, we demonstrate continuous‐flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube‐in‐tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl‐acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch‐mode technique of parahydrogen bubbling through a suspension of the same catalyst.
more »
« less
Asymmetric Transfer Hydrogenation of Heterocyclic Compounds in Continuous Flow Using an Immobilized Chiral Phosphoric Acid as the Catalyst
Abstract This manuscript describes transfer hydrogenation of bicyclic nitrogen-containing heterocyclic compounds using the immobilized chiral phosphoric acid catalyst (R)-PS-AdTRIP in batch and continuous flow. A significant improvement in enantioselectivities is achieved in continuous flow with a fluidized bed reactor packed with (R)-PS-AdTRIP when the flow rate is increased from 0.2 mL/min to 2.0–2.5 mL/min. The optimized continuous flow conditions consistently provide 4–6% ee higher selectivity than transfer hydrogenation in batch with 2 mol% of (R)-PS-AdTRIP, and are used to generate multiple chiral products with the same fluidized bed reactor.
more »
« less
- Award ID(s):
- 1955069
- PAR ID:
- 10461796
- Date Published:
- Journal Name:
- Synthesis
- Volume:
- 55
- Issue:
- 15
- ISSN:
- 0039-7881
- Page Range / eLocation ID:
- 2361 to 2369
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Continuous vibrating spatial particle ALD reactors were developed to achieve high powder throughput while minimizing reactor footprint. Unlike fluidized bed reactors, continuous vibrating spatial particle ALD reactors operate below fluidization, using linear vibration to convey particles through alternating regions of precursor gas. Fine powder convection in these vibrating bed reactors is still not well understood, so cohesive discrete element- method (DEM) simulations were performed to investigate the solids flow behavior. Using a Fast Fourier Transform(FFT) algorithm, we constructed a sum-of-sines model for the reactor kinematics based on accelerometer data. Accelerometer results and DEM simulations revealed the role of high-frequency excitations and need for backsliding and sticking avoidance in horizontal conveyors at low-g accelerations. From these observations, we propose a novel sawtooth excitation to enable convection of cohesive fine powders at low flow velocities. The model results were compared to data from an in-house continuous vibrating spatial particle ALD reactor.more » « less
-
Toxic oxyanions of Cr(VI) can be potentially removed by adsorbents with positively charged surfaces. In this study, we synthesized a stable and insoluble amine-rich polymer composite (CS–PEI–GLA) by crosslinking polyethyleneimine (PEI), a soluble amine-rich synthetic polymer, and chitosan (CS) with glutaraldehyde (GLA). The positively charged amine groups were the main adsorption sites. The batch investigation demonstrated that the adsorbent was able to remove ≥90% of chromium at pH ranging from 2 to 8. Due to deprotonation of the amine groups, chromium removal decreased at higher pH values. The adsorption was fast and reached equilibrium after 45 min. The maximum adsorption capacity was 500 mg g−1 according to the Langmuir isotherm and did not decrease in the presence of monovalent anions. In the column study, the adsorption capacity was the highest when the flow rate was the lowest (5 mL min−1), influent concentration was medium (225 mg L−1), and the bed height was the shortest (3.5 cm). NaOH was the best recovery reagent with recovery of 67% in batch and 31% in the column. The CS–PEI–GLA composite was able to remove 97.1 ± 0.1% chromium in batch and treat 750 mL of electroplating wastewater with a 3.5 cm packed-bed column.more » « less
-
Photoredox-mediated metal-free ring-opening metathesis polymerization (MF-ROMP) is a convenient metal-free method to produce a variety of ROMP polymers. Transitioning MF-ROMP from a batch to a continuous flow process has yet to be demonstrated and could potentially benefit production efficiency, safety, and modularity of reaction conditions. We designed and evaluated continuous flow and droplet flow setups and compared the results for MF-ROMP across a short series of common monomers. By using the droplet flow reactor setup, we achieved flow conversions comparable to that of batch, and circumvented issues with diffusion-limited mixing and air exposure.more » « less
-
Abstract Chiral modifiers of heterogeneous catalysts can function as activity promotors to minimize the influence of unmodified sites on the enantiomeric excess to obtain highly enantioselective catalysts. However, the origin on this effect is not well understood. It is investigated using a model catalyst of R‐(+)‐1‐(1‐naphthyl)‐ethylamine (R‐1‐NEA)/Pd(111) for the hydrogenation of methyl pyruvate (MP) to methyl lactate (ML). The activity of the model catalyst remains constant for multiple turnovers. No rate enhancement is found for R‐1‐NEA coverages below ∼0.5 monolayer (ML), but a significant increase is found at R‐1‐NEA coverages of ∼0.75 ML, with a rate approximately twice that of the unmodified catalyst. This is investigated using infrared spectroscopy to distinguish between MP monomers and dimers. MP titration experiments with hydrogen show a half‐order hydrogen pressure dependence, with the monomer reacting at twice the rate as the dimer. It is found that the dimer is the most abundant species on clean Pd(111), but the ratio of monomers to dimers increases as the R‐1‐NEA coverage increases due to surface crowding. The monomeric species is also found to be more stable on the crowded surface than on clean Pd(111); the chiral modifier also serves to stabilize the reactant. Finally, this model nicely explains the unusual 1‐NEA‐covergae dependence of the reactivity.more » « less
An official website of the United States government

