Background: Intracortical microstimulation (ICMS) is an emerging approach to restore sensation to people with neurological injury or disease. Biomimetic microstimulation, or stimulus trains that mimic neural activity in the brain through encoding of onset and offset transients, could improve the utility of ICMS for brain-computer interface (BCI) applications, but how biomimetic microstimulation affects neural activation is not understood. Current “biomimetic” ICMS trains aim to reproduce the strong onset and offset transients evoked in the brain by sensory input through dynamic modulation of stimulus parameters. Stimulus induced depression of neural activity (decreases in evoked intensity over time) is also a potential barrier to clinical implementation of sensory feedback, and dynamic microstimulation may reduce this effect. Objective: We evaluated how bio-inspired ICMS trains with dynamic modulation of amplitude and/or frequency change the calcium response, spatial distribution, and depression of neurons in the somatosensory and visual cortices. Methods: Calcium responses of neurons were measured in Layer 2/3 of visual and somatosensory cortices of anesthetized GCaMP6s mice in response to ICMS trains with fixed amplitude and frequency (Fixed) and three dynamic ICMS trains that increased the stimulation intensity during the onset and offset of stimulation by modulating the amplitude (DynAmp), frequency (DynFreq), or amplitude and frequency (DynBoth). ICMS was provided for either 1-s with 4-s breaks (Short) or for 30-s with 15-s breaks (Long). Results: DynAmp and DynBoth trains evoked distinct onset and offset transients in recruited neural populations, while DynFreq trains evoked population activity similar to Fixed trains. Individual neurons had heterogeneous responses primarily based on how quickly they depressed to ICMS, where neurons farther from the electrode depressed faster and a small subpopulation (1–5%) were modulated by DynFreq trains. Neurons that depressed to Short trains were also more likely to depress to Long trains, but Long trains induced more depression overall due to the increased stimulation length. Increasing the amplitude during the hold phase resulted in an increase in recruitment and intensity which resulted in more depression and reduced offset responses. Dynamic amplitude modulation reduced stimulation induced depression by 14.6 ± 0.3% for Short and 36.1 ± 0.6% for Long trains. Ideal observers were 0.031 ± 0.009 s faster for onset detection and 1.33 ± 0.21 s faster for offset detection with dynamic amplitude encoding. Conclusions: Dynamic amplitude modulation evokes distinct onset and offset transients, reduces depression of neural calcium activity, and decreases total charge injection for sensory feedback in BCIs by lowering recruitment of neurons during long maintained periods of ICMS. In contrast, dynamic frequency modulation evokes distinct onset and offset transients in a small subpopulation of neurons but also reduces depression in recruited neurons by reducing the rate of activation.
more »
« less
Passive Exposure Sparsifies Neural Activity in the Primary Visual Cortex
A notable feature of neural activity is sparseness – namely, that only a small fraction of neurons in a local circuit have high activity at any moment. Not only is sparse neural activity observed experimentally in most areas of the brain, but sparseness has been proposed as an optimization or design principle for neural circuits. Sparseness can increase the energy efficiency of the neural code as well as allow for beneficial computations to be carried out. But how does the brain achieve sparseness? Here, we found that when neurons in the primary visual cortex were passively exposed to a set of images over several days, neural responses became more sparse. Sparsification was driven by a decrease in the response of neurons with low or moderate activity, while highly activeneurons retained similar responses. We also observed a net decorrelation of neural activity. These changes sculptneural activity for greater coding efficiency.
more »
« less
- Award ID(s):
- 1806932
- PAR ID:
- 10323312
- Date Published:
- Journal Name:
- bioRxiv
- ISSN:
- 2692-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diet profoundly influences brain physiology, but how metabolic information is transmuted into neural activity and behavior changes remains elusive. Here, we show that the metabolic enzyme O-GlcNAc Transferase (OGT) moonlights on the chromatin of the D. melanogaster gustatory neurons to instruct changes in chromatin accessibility and transcription that underlie sensory adaptations to a high-sugar diet. OGT works synergistically with the Mitogen Activated Kinase/Extracellular signal Regulated Kinase (MAPK/ERK) rolled and its effector stripe (also known as EGR2 or Krox20) to integrate activity information. OGT also cooperates with the epigenetic silencer Polycomb Repressive Complex 2.1 (PRC2.1) to decrease chromatin accessibility and repress transcription in the high-sugar diet. This integration of nutritional and activity information changes the taste neurons’ responses to sugar and the flies’ ability to sense sweetness. Our findings reveal how nutrigenomic signaling generates neural activity and behavior in response to dietary changes in the sensory neurons.more » « less
-
null (Ed.)Variable binding is a cornerstone of symbolic reasoning and cognition. But how binding can be implemented in connectionist models has puzzled neuroscientists, cognitive psychologists, and neural network researchers for many decades. One type of connectionist model that naturally includes a binding operation is vector symbolic architectures (VSAs). In contrast to other proposals for variable binding, the binding operation in VSAs is dimensionality-preserving, which enables representing complex hierarchical data structures, such as trees, while avoiding a combinatoric expansion of dimensionality. Classical VSAs encode symbols by dense randomized vectors, in which information is distributed throughout the entire neuron population. By contrast, in the brain, features are encoded more locally, by the activity of single neurons or small groups of neurons, often forming sparse vectors of neural activation. Following Laiho et al. (2015), we explore symbolic reasoning with a special case of sparse distributed representations. Using techniques from compressed sensing, we first show that variable binding in classical VSAs is mathematically equivalent to tensor product binding between sparse feature vectors, another well-known binding operation which increases dimensionality. This theoretical result motivates us to study two dimensionality-preserving binding methods that include a reduction of the tensor matrix into a single sparse vector. One binding method for general sparse vectors uses random projections, the other, block-local circular convolution, is defined for sparse vectors with block structure, sparse block-codes. Our experiments reveal that block-local circular convolution binding has ideal properties, whereas random projection based binding also works, but is lossy. We demonstrate in example applications that a VSA with block-local circular convolution and sparse block-codes reaches similar performance as classical VSAs. Finally, we discuss our results in the context of neuroscience and neural networks.more » « less
-
Modern recordings of neural activity provide diverse observations of neurons across brain areas, behavioral conditions, and subjects; presenting an exciting opportunity to reveal the fundamentals of brain-wide dynamics. Current analysis methods, however, often fail to fully harness the richness of such data, as they provide either uninterpretable representations (e.g., via deep networks) or oversimplify models (e.g., by assuming stationary dynamics or analyzing each session independently). Here, instead of regarding asynchronous neural recordings that lack alignment in neural identity or brain areas as a limitation, we leverage these diverse views into the brain to learn a unified model of neural dynamics. Specifically, we assume that brain activity is driven by multiple hidden global sub-circuits. These sub-circuits represent global basis interactions between neural ensembles—functional groups of neurons—such that the time-varying decomposition of these sub-circuits defines how the ensembles’ interactions evolve over time non-stationarily and non-linearly. We discover the neural ensembles underlying non-simultaneous observations, along with their non-stationary evolving interactions, with our new model, CREIMBO (Cross-Regional Ensemble Interactions in Multi-view Brain Observations). CREIMBO identifies the hidden composition of per-session neural ensembles through novel graph-driven dictionary learning and models the ensemble dynamics on a low-dimensional manifold spanned by a sparse time-varying composition of the global sub-circuits. Thus, CREIMBO disentangles overlapping temporal neural processes while preserving interpretability due to the use of a shared underlying sub-circuit basis. Moreover, CREIMBO distinguishes session-specific computations from global (session-invariant) ones by identifying session covariates and variations in sub-circuit activations. We demonstrate CREIMBO’s ability to recover true components in synthetic data, and uncover meaningful brain dynamics in human high-density electrode recordings, including cross-subject neural mechanisms as well as inter- vs. intra-region dynamical motifs. Furthermore, using mouse whole-brain recordings, we show CREIMBO’s ability to discover dynamical interactions that capture task and behavioral variables and meaningfully align with the biological importance of the brain areas they representmore » « less
-
Abstract Decades of research have shown that global brain states such as arousal can be indexed by measuring the properties of the eyes. The spiking responses of neurons throughout the brain have been associated with the pupil, small fixational saccades, and vigor in eye movements, but it has been difficult to isolate how internal states affect the eyes, and vice versa. While recording from populations of neurons in the visual and prefrontal cortex (PFC), we recently identified a latent dimension of neural activity called “slow drift,” which appears to reflect a shift in a global brain state. Here, we asked if slow drift is correlated with the action of the eyes in distinct behavioral tasks. We recorded from visual cortex (V4) while monkeys performed a change detection task, and PFC, while they performed a memory-guided saccade task. In both tasks, slow drift was associated with the size of the pupil and the microsaccade rate, two external indicators of the internal state of the animal. These results show that metrics related to the action of the eyes are associated with a dominant and task-independent mode of neural activity that can be accessed in the population activity of neurons across the cortex.more » « less
An official website of the United States government

