skip to main content


Search for: All records

Award ID contains: 1806932

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To explore how neural circuits represent novel versus familiar inputs, we presented mice with repeated sets of images with novel images sparsely substituted. Using two-photon calcium imaging to record from layer 2/3 neurons in the mouse primary visual cortex, we found that novel images evoked excess activity in the majority of neurons. This novelty response rapidly emerged, arising with a time constant of 2.6 ± 0.9 s. When a new image set was repeatedly presented, a majority of neurons had similarly elevated activity for the first few presentations, which decayed to steady state with a time constant of 1.4 ± 0.4 s. When we increased the number of images in the set, the novelty response’s amplitude decreased, defining a capacity to store ∼15 familiar images under our conditions. These results could be explained quantitatively using an adaptive subunit model in which presynaptic neurons have individual tuning and gain control. This result shows that local neural circuits can create different representations for novel versus familiar inputs using generic, widely available mechanisms. 
    more » « less
  2. A notable feature of neural activity is sparseness – namely, that only a small fraction of neurons in a local circuit have high activity at any moment. Not only is sparse neural activity observed experimentally in most areas of the brain, but sparseness has been proposed as an optimization or design principle for neural circuits. Sparseness can increase the energy efficiency of the neural code as well as allow for beneficial computations to be carried out. But how does the brain achieve sparseness? Here, we found that when neurons in the primary visual cortex were passively exposed to a set of images over several days, neural responses became more sparse. Sparsification was driven by a decrease in the response of neurons with low or moderate activity, while highly activeneurons retained similar responses. We also observed a net decorrelation of neural activity. These changes sculptneural activity for greater coding efficiency. 
    more » « less
  3. Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions. 
    more » « less