skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Access to opportunities affects physics majors' interest and choice of methods specialization
Physics is a degree that supports many career paths, and students often develop preferences for particular methods, such as theoretical, computational or experimental. However, it is not well understood how those preferences develop and affect students' later career decisions. We used Social Cognitive Career Theory (SCCT) as the basis for interpreting students' decision-making processes. SCCT provides a framework for connecting learning experiences, self-efficacy, and outcome expectations with students' interests, goals, and decisions. Semi-structured interviews with 8 physics students were conducted. This analysis focuses primarily on a single student to provide space to explore all three method specializations (theory, computation, and experiment) in more depth. We find that the availability of resources and learning opportunities had a significant impact on students' career choices. Theoretical and computational experiences were readily available through classwork, undergraduate research, and could be worked on at home and in peer study groups. Students lacked the ability to work on experimental physics outside of infrequent classroom opportunities and could not build peer networks that supported their experimental skill growth, which was linked to lower interest and self-efficacy in regards to experimental physics.  more » « less
Award ID(s):
1846321
NSF-PAR ID:
10323334
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physics Education Research Conference 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley. 
    more » « less
  2. The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44. 
    more » « less
  3. Frank, Brian W. ; Jones, Dyan L. ; Ryan, Qing X. (Ed.)
    The ways in which physics majors make career decisions is a critical, yet understudied, aspect of the undergraduate experience. Such decisions are important to students, physics departments, and administrators. In this project, we specifically examine how students develop interests and intent to pursue specific subfields of physics by interviewing 13 physics majors from all years of study. The interviews examined factors that led students to choose their most preferred and least preferred subfields. Interviews leveraged the framework of Social Cognitive Career Theory, a model that describes how several constructs such as self-efficacy, learning experiences, and outcome expectations relate to decision-making. Findings highlight the differences in decision-making between upper-division students and beginning students. For instance, we see how popular culture and popular science provide an initial learning experience about certain subfields, such as astronomy and astrophysics, which strongly affect beginning students' perceptions of that subfield. Initial exposure to biology and chemistry in high school or early undergraduate classes often negatively affected students' interests in fields like biophysics or chemical physics. Data also suggests a splitting between students with respect to their outcome expectations of a desirable career in science. While some students prioritize using science to help people, others prioritize discovery of new knowledge though science, and some are in between. Students in both groups form perceptions about subfields that do not align with their identities and hence make decisions based on these perceptions. For instance, a student who prioritizes helping others through science may be quick to reject astrophysics as a subfield choice as they do not think that astrophysics can help people enough. 
    more » « less
  4. Miller, Eva (Ed.)
    Nascent Professional Identity Development in Freshman Architecture, Engineering, and Construction (AEC) Women Increasing the persistence of talented women into male-dominated architecture, engineering, and construction (AEC) professions could reduce prevailing workforce shortages and improve gender diversity in AEC industry. Identity theorists advocate that professional identity development (PID) improves students’ persistence to become professionals. However, little empirical research exists to inform and guide AEC educators and professionals on AEC-PID in undergraduate AEC women. As the preliminary part of a larger nationwide and longitudinal research study investigating PID processes in undergraduate AEC women, the objective of this research is to examine the characteristics and nascent AEC-PID in 69 women enrolled in freshman AEC courses in five U.S. institutions. A purposive sampling approach ensures participants have a wide range of demographic characteristics. Data from a recruitment survey is analyzed using the NVivo qualitative data analysis software. Content and relational inductive open coding are conducted vertically for each participant and horizontally across different participants. Results indicate passion/interest, inherent abilities, significant others, benefits from industry, and desire to contribute to industry influence decisions to pursue AEC careers. With 52% of participants having science, technology, engineering, art, and math (STEAM) subject preferences, an in vivo code, Perfect Middle Ground, demonstrated the quest to combine STEM and visual art preferences in AEC career decisions. A participant noted that ‘this major (civil engineering) is the perfect middle ground because I can be creative, but still use my strong gift which happens to be math’. Girls with STEAM strengths and passion, particularly in math and fine art, are most likely to develop nascent AEC-PID. Beyond STEM pre-college programs, AEC educators should consider recruiting from sports, as well as visual and performing arts events for pre-college students. Participants’ positive views focus on the importance and significant societal impact of the AEC industry; while, negative views focus on the lack of gender and racial diversity. A combination of participants’ AEC professional experiences and views reveal four increasing levels of nascent AEC-PID which are categorized as the 4Ps: Plain, Passive, Progressive, and Proactive. As a guide to AEC education and professional communities, recommendations are made to increase the AEC-PID of women in each category. With the highest nascent AEC-PID, women in the Proactive category should serve as leaders in AEC classrooms and student organizations. Considering their AEC professional experience and enthusiasm, they should serve as peer mentors to other students, particularly AEC women. Furthermore, they should be given the opportunity to step into more complex roles during internships and encouraged to pursue co-op opportunities. Insights can guide more targeted recruitment, mentoring, preparation, and retention interventions that strengthen the persistence of the next generation of AEC women professionals. In the long term, this could reduce AEC workforce shortages, improve gender diversity, and foster the innovation and development of more gender friendly AEC products and services. 
    more » « less
  5. Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores the contributing factors. The purpose of our exploratory research is to identify the barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994, 2000), we conducted an online survey to assess the motivational variables that guide the career thinking and advancement of students preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006; Turner et al., 2006), the Career-Related Parent Support Scale (Turner, Alliman-Brissett, Lapan, Udipi, & Ergun, 2003), and the Assessment of Campus Climate for Underrepresented Groups (Rankin, 2001), which were used to measure interests, goals, personal strengths and internal and external barriers and supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their survey responses indicated that students were highly interested in, and had strong self-efficacy for, outcome expectations for, and persistence for pursuing their engineering careers. Their most challenging barriers were financial (e.g., having expenses that are greater than income, and having to work while going to school just to make ends meet) and academic barriers (e.g., not sufficiently prepared academically to study engineering). Perceptions of not fitting in and a lack of career information were also identified as moderately challenging barriers. Students endorsed a number of personal strengths, with the strongest being confidence in their own communication and collaboration skills, as well as commitment to their academic and career preparation. The most notable external support to their engineering career development was their parents’ encouragement to make good grades and to go to a school where they could prepare for a STEM career. Students overall found that their engineering program climates (i.e., interactions with students, faculty, staff, and program expectations of how individuals treat each other) were cooperative, friendly, equitable, and respectful. Study results are interpreted in light of SCCT and recommendations for future research and practice in engineering education are provided. 
    more » « less