skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of Physics Students' Subfield Career Decision-Making Using Social Cognitive Career Theory
The ways in which physics majors make career decisions is a critical, yet understudied, aspect of the undergraduate experience. Such decisions are important to students, physics departments, and administrators. In this project, we specifically examine how students develop interests and intent to pursue specific subfields of physics by interviewing 13 physics majors from all years of study. The interviews examined factors that led students to choose their most preferred and least preferred subfields. Interviews leveraged the framework of Social Cognitive Career Theory, a model that describes how several constructs such as self-efficacy, learning experiences, and outcome expectations relate to decision-making. Findings highlight the differences in decision-making between upper-division students and beginning students. For instance, we see how popular culture and popular science provide an initial learning experience about certain subfields, such as astronomy and astrophysics, which strongly affect beginning students' perceptions of that subfield. Initial exposure to biology and chemistry in high school or early undergraduate classes often negatively affected students' interests in fields like biophysics or chemical physics. Data also suggests a splitting between students with respect to their outcome expectations of a desirable career in science. While some students prioritize using science to help people, others prioritize discovery of new knowledge though science, and some are in between. Students in both groups form perceptions about subfields that do not align with their identities and hence make decisions based on these perceptions. For instance, a student who prioritizes helping others through science may be quick to reject astrophysics as a subfield choice as they do not think that astrophysics can help people enough.  more » « less
Award ID(s):
1846321
PAR ID:
10409046
Author(s) / Creator(s):
; ;
Editor(s):
Frank, Brian W.; Jones, Dyan L.; Ryan, Qing X.
Date Published:
Journal Name:
Physics Education Research Conference 2022
Page Range / eLocation ID:
51 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physics is a degree that supports many career paths, and students often develop preferences for particular methods, such as theoretical, computational or experimental. However, it is not well understood how those preferences develop and affect students' later career decisions. We used Social Cognitive Career Theory (SCCT) as the basis for interpreting students' decision-making processes. SCCT provides a framework for connecting learning experiences, self-efficacy, and outcome expectations with students' interests, goals, and decisions. Semi-structured interviews with 8 physics students were conducted. This analysis focuses primarily on a single student to provide space to explore all three method specializations (theory, computation, and experiment) in more depth. We find that the availability of resources and learning opportunities had a significant impact on students' career choices. Theoretical and computational experiences were readily available through classwork, undergraduate research, and could be worked on at home and in peer study groups. Students lacked the ability to work on experimental physics outside of infrequent classroom opportunities and could not build peer networks that supported their experimental skill growth, which was linked to lower interest and self-efficacy in regards to experimental physics. 
    more » « less
  2. As students pursue a bachelor's degree in physics, they may ponder over which area to specialize in, such as theory, computation, or experiment. Often students develop preferences and dislikes, but it's unclear when this preference solidifies during their undergraduate experiences. To get a better understanding, we interviewed eighteen physics majors who were at different stages of their degree regarding their interest in theory, computation, and experimental methods. Out of the eighteen students, we chose to analyze only nine students who rated computation and theory the lowest. Our analysis did not include interest in experiment because the ratings were less negative. We used Social Cognitive Career Theory (SCCT) and Lucidchart to analyze students' responses and create individual graphical representations of the influences for each student. Through this, we uncovered how various factors such as learning experiences, self-efficacy, and outcome expectations influenced their low interest in a particular method. We found that lack of knowledge and experience is often the main reason why self-efficacy was lower. Students' lack of interest is also influenced by negative outcome expectations (e.g, math-intensive and a bad work-life balance) more than other SCCT factors. Our findings could help physics departments and educators identify positive and negative factors that could lead to a more motivating and inclusive physics curriculum. 
    more » « less
  3. Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores the contributing factors. The purpose of our exploratory research is to identify the barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994, 2000), we conducted an online survey to assess the motivational variables that guide the career thinking and advancement of students preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006; Turner et al., 2006), the Career-Related Parent Support Scale (Turner, Alliman-Brissett, Lapan, Udipi, & Ergun, 2003), and the Assessment of Campus Climate for Underrepresented Groups (Rankin, 2001), which were used to measure interests, goals, personal strengths and internal and external barriers and supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their survey responses indicated that students were highly interested in, and had strong self-efficacy for, outcome expectations for, and persistence for pursuing their engineering careers. Their most challenging barriers were financial (e.g., having expenses that are greater than income, and having to work while going to school just to make ends meet) and academic barriers (e.g., not sufficiently prepared academically to study engineering). Perceptions of not fitting in and a lack of career information were also identified as moderately challenging barriers. Students endorsed a number of personal strengths, with the strongest being confidence in their own communication and collaboration skills, as well as commitment to their academic and career preparation. The most notable external support to their engineering career development was their parents’ encouragement to make good grades and to go to a school where they could prepare for a STEM career. Students overall found that their engineering program climates (i.e., interactions with students, faculty, staff, and program expectations of how individuals treat each other) were cooperative, friendly, equitable, and respectful. Study results are interpreted in light of SCCT and recommendations for future research and practice in engineering education are provided. 
    more » « less
  4. This study examines the roots of entrepreneurial career goals among today’s U.S. undergraduate engineering students. Extensive literature exists on entrepreneurship education and on students’ career decision making, yet little work connects the two. To address this gap, we explore a sample of 5,819 undergraduate engineering students from a survey administered in 2015 to a nationally representative set of twenty-seven U.S. engineering schools. We identify how individual background measures, occupational learning experiences, and socio-cognitive measures such as self-efficacy beliefs, outcome expectations, and interest in innovation and entrepreneurship affect students’ entrepreneurial career focus. Based on career focus, the sample is split into “Starters” and “Joiners” where Starters are students who wish to start a new venture and Joiners are those who wish to join an existing venture. Results show the demographic, behavioral, and socio-cognitive characteristics of each group. Findings suggest that relative to Joiners, Starters have stronger occupational self-efficacy beliefs which are driven by higher interests in innovation-related activities and ascribing greater importance to involvement in innovation practices early in their careers. Additionally, the significant influence of particular learning experiences is discussed. These results have implications for engineering and entrepreneurship education. (This paper earned Best Research Paper Award, 3rd Place, in the ENT division.) 
    more » « less
  5. This complete research paper examines the connection between student beliefs about engineering as a profession, as well as the perceptions of their family and friends, to their reported self-efficacy, career expectations, and grittiness. The student responses examined were obtained from non-calculus ready engineering students at a large land grant institution in the Mid-Atlantic region. The students participated in a well-established program focused on cohort formation, mentorship, professional skill development, and fostering a sense of inclusion and belonging in engineering. The program, consisting of a one-week pre-fall bridge experience and two common courses, was founded in 2012 and has been operating with National Science Foundation (NSF) S-STEM funding since 2016. Students who received S-STEM funded scholarships are required to participate in focus groups, one-on-one interviews, and complete LAESE, MSLQ, and GRIT questionnaires each semester. The researchers applied qualitative coding methods to evaluate student responses from focus groups and one-one-one interviews which were conducted from 2017 to 2019. Questions examined in this paper include: 1) How would you describe an engineer? 2) Please describe what you think an engineer does on a daily basis. 3) What do you think your friends/family think of engineering? 4) What skills or characteristics do you think good engineers have? 5) What types of careers do you believe are filled by degree holding engineers? Student responses on the aforementioned questions were related to the self-efficacy, career expectation, and grit values obtained from the LAESE, MSLQ, and GRIT instruments. The nature of this longitudinal study allows the evolution of student responses to also be examined as they matriculate through their education. Additional analysis was performed to identify themes and numerical trends associated with student populations such as, underrepresented minorities, females, and first-generation college students. Results of this research are presented in an effort to further highlight the importance of exposure to STEM fields during an individual’s K-12 education, and express how student perceptions, self-efficacy, GRIT, and career expectations evolve over their undergraduate education. 
    more » « less