skip to main content

Title: ReTail: Opting for Learning Simplicity to Enable QoS-Aware Power Management in the Cloud
Many cloud services have Quality-of-Service (QoS) requirements; most requests have to to complete within a given latency constraint. Recently, researchers have begun to investigate whether it is possible to meet QoS while attempting to save power on a per-request basis. Existing work shows that one can indeed hand-tune a request latency predictor offline for a particular cloud application, and consult it at runtime to modulate CPU voltage and frequency, resulting in substantial power savings. In this paper, we propose ReTail, an automated and general solution for request-level power management of latency-critical services with QoS constraints. We present a systematic process to select the features of any given application that best correlate with its request latency. ReTail uses these features to predict latency, and adjust CPU’s power consumption. ReTail’s predictor is trained fully at runtime. We show that unlike previous findings, simple techniques perform better than complex machine learning models, when using the right input features. For a web search engine, ReTail outperforms prior mechanisms based on complex hand-tuned predictors for that application domain. Furthermore, ReTail’s systematic approach also yields superior power savings across a diverse set of cloud applications.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
28th IEEE International Symposium on High-Performance Computer Architecture (HPCA-28)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Internet of Things (IoT) devices are becoming increasingly prevalent in our environment, yet the process of programming these devices and processing the data they produce remains difficult. Typically, data is processed on device, involving arduous work in low level languages, or data is moved to the cloud, where abundant resources are available for Functions as a Service (FaaS) or other handlers. FaaS is an emerging category of flexible computing services, where developers deploy self-contained functions to be run in portable and secure containerized environments; however, at the moment, these functions are limited to running in the cloud or in some cases at the "edge" of the network using resource rich, Linux-based systems. In this work, we investigate NanoLambda, a portable platform that brings FaaS, high-level language programming, and familiar cloud service APIs to non-Linux and microcontroller-based IoT devices. To enable this, NanoLambda couples a new, minimal Python runtime system that we have designed for the least capable end of the IoT device spectrum, with API compatibility for AWS Lambda and S3. NanoLambda transfers functions between IoT devices (sensors, edge, cloud), providing power and latency savings while retaining the programmer productivity benefits of high-level languages and FaaS. A key feature of NanoLambda is a scheduler that intelligently places function executions across multi-scale IoT deployments according to resource availability and power constraints. We evaluate a range of applications that use NanoLambda to run on devices as small as the ESP8266 with 64KB of ram and 512KB flash storage. 
    more » « less
  2. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms. 
    more » « less
  3. The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop, we envision an automated device-level DNN model selection engine for QoE-optimal edge inference. To concretize our vision, we formulate the DNN model selection problem into a contextual multi-armed bandit framework, where features of edge devices and DNN models are contexts and pre-trained DNN models are arms selected online based on the history of actions and users' QoE feedback. We develop an efficient online learning algorithm to balance exploration and exploitation. Our preliminary simulation results validate our algorithm and highlight the potential of machine learning for automating DNN model selection to achieve QoE-optimal edge inference. 
    more » « less
  4. The slowdown of Moore’s Law, combined with advances in 3D stacking of logic and memory, have pushed architects to revisit the concept of processing-in-memory (PIM) to overcome the memory wall bottleneck. This PIM renaissance finds itself in a very different computing landscape from the one twenty years ago, as more and more computation shifts to the cloud. Most PIM architecture papers still focus on best-effort applications, while PIM’s impact on latency-critical cloud applications is not well understood. This paper explores how datacenters can exploit PIM architectures in the context of latency-critical applications. We adopt a general-purpose cloud server with HBM-based, 3D-stacked logic+memory modules, and study the impact of PIM on six diverse interactive cloud applications. We reveal the previously neglected opportunity that PIM presents to these services, and show the importance of properly managing PIM-related resources to meet the QoS targets of interactive services and maximize resource efficiency. Then, we present PIMCloud, a QoS-aware resource manager designed for cloud systems with PIM allowing colocation of multiple latency-critical and best-effort applications. We show that PIMCloud efficiently manages PIM resources: it (1) improves effective machine utilization by up to 70% and 85% (average 24% and 33%) under 2-app and 3-app mixes, compared to the best state-of-the-art manager; (2) helps latency-critical applications meet QoS; and (3) adapts to varying load patterns. 
    more » « less
  5. During the past few years, serverless computing has changed the paradigm of application development and deployment in the cloud and edge due to its unique advantages, including easy administration, automatic scaling, built-in fault tolerance, etc. Nevertheless, serverless computing is also facing challenges such as long latency due to the cold start. In this paper, we present an in-depth performance analysis of cold start in the serverless framework and propose HotC, a container-based runtime management framework that leverages the lightweight containers to mitigate the cold start and improve the network performance of serverless applications. HotC maintains a live container runtime pool, analyzes the user input or configuration file, and provides available runtime for immediate reuse. To precisely predict the request and efficiently manage the hot containers, we design an adaptive live container control algorithm combining the exponential smoothing model and Markov chain method. Our evaluation results show that HotC introduces negligible overhead and can efficiently improve the performance of various applications with different network traffic patterns in both cloud servers and edge devices. 
    more » « less