skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ReTail: Opting for Learning Simplicity to Enable QoS-Aware Power Management in the Cloud
Many cloud services have Quality-of-Service (QoS) requirements; most requests have to to complete within a given latency constraint. Recently, researchers have begun to investigate whether it is possible to meet QoS while attempting to save power on a per-request basis. Existing work shows that one can indeed hand-tune a request latency predictor offline for a particular cloud application, and consult it at runtime to modulate CPU voltage and frequency, resulting in substantial power savings. In this paper, we propose ReTail, an automated and general solution for request-level power management of latency-critical services with QoS constraints. We present a systematic process to select the features of any given application that best correlate with its request latency. ReTail uses these features to predict latency, and adjust CPU’s power consumption. ReTail’s predictor is trained fully at runtime. We show that unlike previous findings, simple techniques perform better than complex machine learning models, when using the right input features. For a web search engine, ReTail outperforms prior mechanisms based on complex hand-tuned predictors for that application domain. Furthermore, ReTail’s systematic approach also yields superior power savings across a diverse set of cloud applications.  more » « less
Award ID(s):
1846046
PAR ID:
10323344
Author(s) / Creator(s):
Date Published:
Journal Name:
28th IEEE International Symposium on High-Performance Computer Architecture (HPCA-28)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reducing tail latency has become a crucial issue for optimizing the performance of online cloud services and distributed applications. In distributed applications, there are many causes of high end-to-end tail latency, including operating system delays, request re-ordering due to fan-out/fanin, and network congestion. Although recent research has focused on reducing tail latency for individual application components, such as by replicating requests and scheduling, in this paper, we argue for a holistic approach for reducing the end-to-end tail latency across application components. We propose TailClipper, a distributed scheduler that tags each arriving request with an arrival timestamp, and propagates it across the microservices' call chain. TailClipper then uses arrival timestamps to implement an oldest request first scheduler that combines global first-come first serve with a limited form of processor sharing to reduce end-to-end tail latency. In doing so, TailClipper can counter the performance degradation caused by request reordering in multi-tiered and microservices-based applications. We implement TailClipper as a userspace Linux scheduler and evaluate it using cloud workload traces and a real-world microservices application. Compared to state-of-the-art schedulers, our experiments reveal that TailClipper improves the 99th percentile response time by up to 81%, while also improving the mean response time and the system throughput by up to 54% and 29% respectively under high loads. 
    more » « less
  2. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms. 
    more » « less
  3. The slowdown of Moore’s Law, combined with advances in 3D stacking of logic and memory, have pushed architects to revisit the concept of processing-in-memory (PIM) to overcome the memory wall bottleneck. This PIM renaissance finds itself in a very different computing landscape from the one twenty years ago, as more and more computation shifts to the cloud. Most PIM architecture papers still focus on best-effort applications, while PIM’s impact on latency-critical cloud applications is not well understood. This paper explores how datacenters can exploit PIM architectures in the context of latency-critical applications. We adopt a general-purpose cloud server with HBM-based, 3D-stacked logic+memory modules, and study the impact of PIM on six diverse interactive cloud applications. We reveal the previously neglected opportunity that PIM presents to these services, and show the importance of properly managing PIM-related resources to meet the QoS targets of interactive services and maximize resource efficiency. Then, we present PIMCloud, a QoS-aware resource manager designed for cloud systems with PIM allowing colocation of multiple latency-critical and best-effort applications. We show that PIMCloud efficiently manages PIM resources: it (1) improves effective machine utilization by up to 70% and 85% (average 24% and 33%) under 2-app and 3-app mixes, compared to the best state-of-the-art manager; (2) helps latency-critical applications meet QoS; and (3) adapts to varying load patterns. 
    more » « less
  4. Function-as-a-Service (FaaS) is becoming an increasingly popular cloud-deployment paradigm for serverless computing that frees application developers from managing the infrastructure. At the same time, it allows cloud providers to assert control in workload consolidation, i.e., co-locating multiple containers on the same server, thereby achieving higher server utilization, often at the cost of higher end-to-end function request latency. Interestingly, a key aspect of serverless latency management has not been well studied: the trade-off between application developers' latency goals and the FaaS providers' utilization goals. This paper presents a multi-faceted, measurement-driven study of latency variation in serverless platforms that elucidates this trade-off space. We obtained production measurements by executing FaaS benchmarks on IBM Cloud and a private cloud to study the impact of workload consolidation, queuing delay, and cold starts on the end-to-end function request latency. We draw several conclusions from the characterization results. For example, increasing a container's allocated memory limit from 128 MB to 256 MB reduces the tail latency by 2× but has 1.75× higher power consumption and 59% lower CPU utilization. 
    more » « less
  5. Reducing network latency in mobile applications is an effective way of improving the mobile user experience and has tangible economic benefits. This paper presents PALOMA, a novel client-centric technique for reducing the network latency by prefetching HTTP requests in Android apps. Our work leverages string analysis and callback control-flow analysis to automatically instrument apps using PALOMA’s rigorous formulation of scenarios that address “what” and “when” to prefetch. PALOMA has been shown to incur significant runtime savings (several hundred milliseconds per prefetchable HTTP request), both when applied on a reusable evaluation benchmark we have developed and on real applications. 
    more » « less