Scalar field ϕCDM models provide an alternative to the standard ΛCDM paradigm, while being physically better motivated. Dynamical scalar field ϕCDM models are divided into two classes: the quintessence (minimally and non-minimally interacting with gravity) and phantom models. These models explain the phenomenology of late-time dark energy. In these models, energy density and pressure are time-dependent functions under the assumption that the scalar field is described by the ideal barotropic fluid model. As a consequence of this, the equation of state parameter of the ϕCDM models is also a time-dependent function. The interaction between dark energy and dark matter, namely their transformation into each other, is considered in the interacting dark energy models. The evolution of the universe from the inflationary epoch to the present dark energy epoch is investigated in quintessential inflation models, in which a single scalar field plays a role of both the inflaton field at the inflationary epoch and of the quintessence scalar field at the present epoch. We start with an overview of the motivation behind these classes of models, the basic mathematical formalism, and the different classes of models. We then present a compilation of recent results of applying different observational probes to constraining ϕCDM model parameters. Over the last two decades, the precision of observational data has increased immensely, leading to ever tighter constraints. A combination of the recent measurements favors the spatially flat ΛCDM model but a large class of ϕCDM models is still not ruled out.
more »
« less
Dynamical attractors in contracting spacetimes dominated by kinetically coupled scalar fields
Abstract We present non-perturbative numerical relativity simulations of slowly contracting spacetimes in which the scalar field driving slow contraction is coupled to a second scalar field through an exponential non-linear σ model-type kinetic interaction. These models are important because they can generate a nearly scale-invariant spectrum of super-Hubble density fluctuations fully consistent with cosmic microwave background observations. We show that the non-linear evolution rapidly approaches a homogeneous, isotropic and flat Friedmann-Robertson-Walker (FRW) geometry for a wide range of inhomogeneous and anisotropic initial conditions. Ultimately, we find, the kinetic coupling causes the evolution to deflect away from flat FRW and towards a novel Kasner-like stationary point, but in general this occurs on time scales that are too long to be observationally relevant.
more »
« less
- PAR ID:
- 10323526
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2021
- Issue:
- 12
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 030
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We study the interior of a recently constructed family of asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Inside the horizon, these black holes resemble the interior of a holographic superconductor. There are analogs of the Josephson oscillations of the scalar field, and the final Kasner singularity depends very sensitively on the black hole parameters near the onset of the instability. In an appendix, we give a general argument that Cauchy horizons cannot exist in a large class of stationary black holes with scalar hair.more » « less
-
Abstract It is well known that asymptotically flat black holes in generalrelativity have a vanishing static, conservative tidal response. We show that this is a result of linearly realized symmetries governingstatic (spin 0,1,2)perturbations around black holes. The symmetries have a geometric origin: in the scalar case, they arise from the (E)AdS isometries of a dimensionally reduced black hole spacetime. Underlying the symmetries is a ladder structure which can be used to construct the full tower of solutions,and derive their general properties: (1) solutions that decay withradius spontaneously break the symmetries, and mustdiverge at the horizon;(2) solutions regular at the horizon respect the symmetries, andtake the form of a finite polynomial that grows with radius.Taken together, these two properties imply that static response coefficients — and in particular Love numbers — vanish. Moreover, property (1) is consistent with the absence of black holes with linear (perturbative) hair. We also discuss the manifestation of these symmetries in the effective point particle description of a black hole, showing explicitly that for scalar probesthe worldline couplings associated with a non-trivial tidal response and scalar hair must vanish in order for the symmetries to be preserved.more » « less
-
In loop quantum cosmology, the slow-roll inflation is generic, and when the kinetic energy of the scalar field dominates at the bounce, the evolution of the Friedmann-Lemaître-Robertson-Walker universe will go through three distinguishable epochs, bouncing, transition, and finally slow-roll inflation, before the reheating commences. The bouncing dynamics are insensitive of the potential and initial conditions, so that the expansion factor and the scalar field can be described uniquely by a universal solution during this epoch. After about 105 Planck time, the epoch of transition starts and the universe rapidly turns over from the kinetic energy dominated state to the potential energy dominated one, whereby the slow-roll inflationary phase begins. In this paper, we consider the power law plateau potential and study the pre-inflationary cosmology for different sets of initial conditions, so that during the slow-roll inflation epoch enough e-folds will be produced. Considering the generalized reheating and comparing with the recent Planck 2018 data, we are able to constrain the total number of e-folds (NT) from the bounce till today to be consistent with the current observable universe. Depending on the matter driving the reheating (subject to the different dominant equations of states), we report the observationally allowed NT and reheating temperature and find in particular NT≃127, which is significantly different from the one NT≳141 obtained previously without considering the reheating phase.more » « less
-
null (Ed.)The nonresonant cosmic ray instability, predicted by Bell (2004), is thought to play an important role in the acceleration and confinement of cosmic rays (CR) close to supernova remnants. Despite its importance, the exact mechanism responsible for the saturation of the instability has not been determined, and there is no first-principle prediction for the amplitude of the saturated magnetic field. Using a survey of self-consistent hybrid simulations (with kinetic ions and fluid electrons), we study the non-linear evolution of the Bell instability as a function of the parameters of the CR population. We find that saturation is achieved when the magnetic pressure in the amplified field is comparable to the initial CR momentum flux.more » « less
An official website of the United States government

