skip to main content


Title: Dynamical attractors in contracting spacetimes dominated by kinetically coupled scalar fields
Abstract We present non-perturbative numerical relativity simulations of slowly contracting spacetimes in which the scalar field driving slow contraction is coupled to a second scalar field through an exponential non-linear σ model-type kinetic interaction. These models are important because they can generate a nearly scale-invariant spectrum of super-Hubble density fluctuations fully consistent with cosmic microwave background observations. We show that the non-linear evolution rapidly approaches a homogeneous, isotropic and flat Friedmann-Robertson-Walker (FRW) geometry for a wide range of inhomogeneous and anisotropic initial conditions. Ultimately, we find, the kinetic coupling causes the evolution to deflect away from flat FRW and towards a novel Kasner-like stationary point, but in general this occurs on time scales that are too long to be observationally relevant.  more » « less
Award ID(s):
2102914 1912171
NSF-PAR ID:
10323526
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2021
Issue:
12
ISSN:
1475-7516
Page Range / eLocation ID:
030
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time.

     
    more » « less
  2. ABSTRACT Cold Dark Matter with cosmological constant (ΛCDM) cosmological models with early dark energy (EDE) have been proposed to resolve tensions between the Hubble constant $H_0=100\, h$ km ṡ−1Ṁpc−1 measured locally, giving h ≈ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other early-Universe measurements plus ΛCDM, giving h ≈ 0.67. EDE models do this by adding a scalar field that temporarily adds dark energy equal to about 10 per cent of the cosmological energy density at the end of the radiation-dominated era at redshift z ∼ 3500. Here, we compare linear and non-linear predictions of a Planck-normalized ΛCDM model including EDE giving h = 0.728 with those of standard Planck-normalized ΛCDM with h = 0.678. We find that non-linear evolution reduces the differences between power spectra of fluctuations at low redshifts. As a result, at z = 0 the halo mass functions on galactic scales are nearly the same, with differences only 1–2 per cent. However, the differences dramatically increase at high redshifts. The EDE model predicts 50 per cent more massive clusters at z = 1 and twice more galaxy-mass haloes at z = 4. Even greater increases in abundances of galaxy-mass haloes at higher redshifts may make it easier to reionize the universe with EDE. Predicted galaxy abundances and clustering will soon be tested by the James Webb Space Telescope (JWST) observations. Positions of baryonic acoustic oscillations (BAOs) and correlation functions differ by about 2 per cent between the models – an effect that is not washed out by non-linearities. Both standard ΛCDM and the EDE model studied here agree well with presently available acoustic-scale observations, but the Dark Energy Spectroscopic Instrument and Euclid measurements will provide stringent new tests. 
    more » « less
  3. Abstract

    Using a hybrid-kinetic particle-in-cell simulation, we study the evolution of an expanding, collisionless, magnetized plasma in which strong Alfvénic turbulence is persistently driven. Temperature anisotropy generated adiabatically by the plasma expansion (and consequent decrease in the mean magnetic-field strength) gradually reduces the effective elasticity of the field lines, causing reductions in the linear frequency and residual energy of the Alfvénic fluctuations. In response, these fluctuations modify their interactions and spatial anisotropy to maintain a scale-by-scale “critical balance” between their characteristic linear and nonlinear frequencies. Eventually the plasma becomes unstable to kinetic firehose instabilities, which excite rapidly growing magnetic fluctuations at ion-Larmor scales. The consequent pitch-angle scattering of particles maintains the temperature anisotropy near marginal stability, even as the turbulent plasma continues to expand. The resulting evolution of parallel and perpendicular temperatures does not satisfy double-adiabatic conservation laws, but is described accurately by a simple model that includes anomalous scattering. Our results have implications for understanding the complex interplay between macro- and microscale physics in various hot, dilute, astrophysical plasmas, and offer predictions concerning power spectra, residual energy, ion-Larmor-scale spectral breaks, and non-Maxwellian features in ion distribution functions that may be tested by measurements taken in high-beta regions of the solar wind.

     
    more » « less
  4. Abstract It is well known that asymptotically flat black holes in generalrelativity have a vanishing static, conservative tidal response. We show that this is a result of linearly realized symmetries governingstatic (spin 0,1,2)perturbations around black holes. The symmetries have a geometric origin: in the scalar case, they arise from the (E)AdS isometries of a dimensionally reduced black hole spacetime. Underlying the symmetries is a ladder structure which can be used to construct the full tower of solutions,and derive their general properties: (1) solutions that decay withradius spontaneously break the symmetries, and mustdiverge at the horizon;(2) solutions regular at the horizon respect the symmetries, andtake the form of a finite polynomial that grows with radius.Taken together, these two properties imply that static response coefficients — and in particular Love numbers — vanish. Moreover, property (1) is consistent with the absence of black holes with linear (perturbative) hair. We also discuss the manifestation of these symmetries in the effective point particle description of a black hole, showing explicitly that for scalar probesthe worldline couplings associated with a non-trivial tidal response and scalar hair must vanish in order for the symmetries to be preserved. 
    more » « less
  5. ABSTRACT

    Beginning with cosmological initial conditions at z = 100, we simulate the effects of magnetic fields on the formation of Population III stars and compare our results with the predictions of Paper I. We use gadget-2 to follow the evolution of the system while the field is weak. We introduce a new method for treating kinematic fields by tracking the evolution of the deformation tensor. The growth rate in this stage of the simulation is lower than expected for diffuse astrophysical plasmas, which have a very low resistivity (high magnetic Prandtl number); we attribute this to the large numerical resistivity in simulations, corresponding to a magnetic Prandtl number of order unity. When the magnetic field begins to be dynamically significant in the core of the minihalo at z = 27, we map it on to a uniform grid and follow the evolution in an adaptive mesh refinement, MHD simulation in orion2. The non-linear evolution of the field in the orion2 simulation violates flux-freezing and is consistent with the theory proposed by Xu & Lazarian. The fields approach equipartition with kinetic energy at densities ∼1010–1012 cm−3. When the same calculation is carried out in orion2 with no magnetic fields, several protostars form, ranging in mass from ∼1 to 30 M⊙; with magnetic fields, only a single ∼30 M⊙ protostar forms by the end of the simulation. Magnetic fields thus suppress the formation of low-mass Pop III stars, yielding a top-heavy Pop III initial mass function and contributing to the absence of observed Pop III stars.

     
    more » « less