In loop quantum cosmology, the slow-roll inflation is generic, and when the kinetic energy of the scalar field dominates at the bounce, the evolution of the Friedmann-Lemaître-Robertson-Walker universe will go through three distinguishable epochs, bouncing, transition, and finally slow-roll inflation, before the reheating commences. The bouncing dynamics are insensitive of the potential and initial conditions, so that the expansion factor and the scalar field can be described uniquely by a universal solution during this epoch. After about 105 Planck time, the epoch of transition starts and the universe rapidly turns over from the kinetic energy dominated state to the potential energy dominated one, whereby the slow-roll inflationary phase begins. In this paper, we consider the power law plateau potential and study the pre-inflationary cosmology for different sets of initial conditions, so that during the slow-roll inflation epoch enough e-folds will be produced. Considering the generalized reheating and comparing with the recent Planck 2018 data, we are able to constrain the total number of e-folds (NT) from the bounce till today to be consistent with the current observable universe. Depending on the matter driving the reheating (subject to the different dominant equations of states), we report the observationally allowed NT and reheating temperature and find in particular NT≃127, which is significantly different from the one NT≳141 obtained previously without considering the reheating phase.
more »
« less
Observational Constraints on Dynamical Dark Energy Models
Scalar field ϕCDM models provide an alternative to the standard ΛCDM paradigm, while being physically better motivated. Dynamical scalar field ϕCDM models are divided into two classes: the quintessence (minimally and non-minimally interacting with gravity) and phantom models. These models explain the phenomenology of late-time dark energy. In these models, energy density and pressure are time-dependent functions under the assumption that the scalar field is described by the ideal barotropic fluid model. As a consequence of this, the equation of state parameter of the ϕCDM models is also a time-dependent function. The interaction between dark energy and dark matter, namely their transformation into each other, is considered in the interacting dark energy models. The evolution of the universe from the inflationary epoch to the present dark energy epoch is investigated in quintessential inflation models, in which a single scalar field plays a role of both the inflaton field at the inflationary epoch and of the quintessence scalar field at the present epoch. We start with an overview of the motivation behind these classes of models, the basic mathematical formalism, and the different classes of models. We then present a compilation of recent results of applying different observational probes to constraining ϕCDM model parameters. Over the last two decades, the precision of observational data has increased immensely, leading to ever tighter constraints. A combination of the recent measurements favors the spatially flat ΛCDM model but a large class of ϕCDM models is still not ruled out.
more »
« less
- Award ID(s):
- 2307698
- PAR ID:
- 10533481
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Universe
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2218-1997
- Page Range / eLocation ID:
- 122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Universe is neither homogeneous nor isotropic, but it is close enough that we can reasonably approximate it as such on suitably large scales.The inflationary-Λ-Cold Dark Matter (ΛCDM) concordance cosmology builds on these assumptions to describe the origin and evolution of fluctuations. With standard assumptions about stress-energy sources, this system is specified by just seven phenomenological parameters,whose precise relations to underlying fundamental theories are complicated and may depend on details of those fields.Nevertheless, it is common practice to set the parameter that characterizes the spatial curvature, ΩK, exactly to zero.This parameter-fixed ΛCDM is awarded distinguished status as separate model, “flat ΛCDM.”Ipso factothis places the onus on proponents of “curved ΛCDM” to present sufficient evidence that ΩK≠ 0, and is needed as a parameter.While certain inflationary model Lagrangians, with certain values of their parameters, and certain initial conditions, will lead to a present-day universe well-described as containing zero curvature, this does not justify distinguishing that subset of Lagrangians, parameters and initial conditions into a separate model.Absent any theoretical arguments, we cannot use observations that suggest small ΩKto enforce ΩK= 0.Our track record in picking inflationary models and their parametersa priorimakes such a choice dubious, andconcerns about tensions in cosmological parameters and large-angle cosmic-microwave-background anomalies strengthens arguments against this choice.We argue that ΩKmust not be set to zero, and that ΛCDM remains a phenomenological model with at least 7 parameters.more » « less
-
A<sc>bstract</sc> We present a new class of interacting dark sector models that can address the Hubble tension. Interacting dark radiation (DR) has previously been put forward as a solution to the problem, but this proposal is disfavored by the high-ℓcosmic microwave background (CMB) data. We modify this basic framework by introducing a subcomponent of dark matter (DM) that interacts strongly with the DR, so that together they constitute a tightly coupled fluid at early times. We show that if this subcomponent decouples from the interacting DR during the CMB epoch, theℓmodes of the CMB that entered the horizon before decoupling are impacted differently from those that entered after, allowing a solution to the problem. We present a model that realizes this framework, which we dub “New Atomic Dark Matter”, or nuADaM, in which the interacting dark matter (iDM) subcomponent is composed of dark atoms, and dark “neutrinos” with long-range interactions contribute to the DR, hence the name of the model. This iDM subcomponent is acoustic at early times but decouples from the DR following dark recombination. In contrast to conventional atomic dark matter (ADM) models, the dark photon is part of a richer DR sector, which ensures that it continues to be self-interacting even after recombination. We show that this model admits a significantly larger value ofH0than ΛCDM when fit to CMB and BAO data, while maintaining a comparable goodness of fit. Once the SHOES data set is included, it provides a significantly better fit than ΛCDM.more » « less
-
Although the standard Λ+cold dark matter (ΛCDM) model is well tested on large scales, the primordial power spectrum may deviate from the ΛCDM spectrum on small scales due to specific dark matter properties or alternative inflationary models. These deviations affect the formation of dark matter structure, which subsequently leads to different observable properties of galaxies. In this work, we study the impact of a blue and red tilted power spectrum on the central density of dwarf galaxies. To do this, we model densities of dwarf galaxies using a combination of high-resolution numerical simulations and galaxy formation model. The model galaxies in ΛCDM are consistent with observations of 41 faint dwarf satellite galaxies of the Milky Way. The deviations from the ΛCDM power spectrum are constrained by the central matter densities of dwarf galaxies, which set stringent constraints on the possible small-scale tilt of the primordial power spectrum, improving on the current limits. Moreover, similar analysis can be applied to test any feature in the power spectrum at small scales between k∼10–100 Mpc-1.more » « less
-
We study inflation in a recently proposed gravitational effective field theory describing the trace anomaly. The theory requires an additional scalar which is massless in the early universe. This scalar—referenced as an anomalyon—couples to the familiar matter and radiation through the gauge field trace anomaly. We derive a class of cosmological solutions that deviate from the standard inflationary ones only slightly, in spite of the fact that the anomalyon has a sizable time dependent background. On the other hand, the scalar cosmological perturbations in this theory are different from the conventional inflationary perturbations. The inflaton and anomalyon perturbations mix, and one of the diagonal combinations gives the standard nearly scale-invariant adiabatic spectrum, while the other combination has a blue power spectrum at short distance scales. We argue that this blue spectrum can lead to the formation of primordial black holes (PBHs) at distance scales much shorter than the ones tested in cosmic microwave background observations. The resulting PBHs can be heavy enough to survive to the present day Universe. For natural values of the parameters involved the PBHs would constitute only a tiny fraction of the dark matter, but with fine-tunings perhaps all of dark matter could be accounted by them. We also show that the theory predicts primordial gravitational waves which are almost identical to the standard inflationary ones. Published by the American Physical Society2025more » « less
An official website of the United States government

