skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Reduced-Adjoint Variational Data Assimilation for Estimating Soil Moisture Profile from Surface Soil Moisture Observations
Award ID(s):
1944457
PAR ID:
10323571
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Geoscience and Remote Sensing Symposium
Page Range / eLocation ID:
6458 to 6460
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microbes can promote beneficial plant and animal responses to abiotic environments, but the ecological drivers of this benefit remain elusive. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider species. In experimental mesocosms, microbial traits predicted plant responses to soil moisture such that bacteria with self-beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self-beneficial traits in well-watered environments increased these same plant traits in well-watered environments. Thus, microbial traits that promote microbial success in different soil moisture environments also promote plant success in these same environments. Our results show that the concept of byproduct benefits, originally conceived to explain the evolution of cooperation in pairwise mutualisms, also applies to interactions between plants and non-symbiotic soil microbes. Descriptions of the data can be found in the README_Bolin_Lennon_Lau_2022.txt file. 
    more » « less
  2. Abstract Microorganisms can help plants and animals contend with abiotic stressors, but why they provide such benefits remains unclear. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider. In a greenhouse experiment, microbial traits predicted plant responses to soil moisture such that bacteria with self‐beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self‐beneficial traits in well‐watered environments increased these same plant traits in well‐watered soils. Thus, microbial traits that promote microbial success in different moisture environments also promote plant success in these same environments. Our results demonstrate that byproduct benefits, a concept developed to explain the evolution of cooperation in pairwise mutualisms, can also extend to interactions between plants and nonsymbiotic soil microbes. 
    more » « less
  3. null (Ed.)