Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N 2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium( iii ) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH 2 ) 2 Cl] + , or results in dehydrohalogenation to the rhenium( iii ) amido complex, (PNP)Re(NH 2 )Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol −1 , while DFT computations indicate a substantially weaker N–H bond of the putative rhenium( iv )-imide intermediate (BDE = 38 kcal mol −1 ). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH 3 generation.
more »
« less
Activating dinitrogen for chemical looping ammonia Synthesis: Mn nitride layer growth modeling
The earth-abundant transition metal manganese (Mn) has been shown to activate dinitrogen (N 2) and store nitrogen (N) as nitride for subsequent chemical reaction, for example, to produce ammonia (NH3). Chemical looping ammonia synthesis (CLAS) is a practical way to use Mn nitride by contacting nitride with gaseous hydrogen (H2 ) to produce ammonia (NH 3). Here, the dynamic process of N atoms penetrating into solid Mn has been investigated. Nitride layer growth was modeled to quantitate and pre- dict the storage of activated N in Mn towards designing CLAS systems. The N diffusion coefficient (DN ) and reaction rate constant K for the first-order nitridation reaction were estimated at 6.2 ± 5.5 10-11 m2/s and 4.1 ± 3.5 10-4 1/s, respectively, at atmospheric pressure and 700 °C. Assuming spherical particles of Mn with a diameter of < 10 lm, about 56.8 metric tons of Mn is sufficient to produce a metric ton of NH 3 per day using CLAS
more »
« less
- Award ID(s):
- 1856084
- PAR ID:
- 10323580
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Chemical Engineering Science
- Volume:
- 252
- Issue:
- C
- ISSN:
- 0009-2509
- Page Range / eLocation ID:
- 117287
- Subject(s) / Keyword(s):
- Manganese nitride Ammonia synthesis Chemical looping N diffusion coefficient (DN) Reaction rate constant (K) Mass transfer
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spectral lines of ammonia, NH 3 , are useful probes of the physical conditions in dense molecular cloud cores. In addition to advantages in spectroscopy, ammonia has also been suggested to be resistant to freezing onto grain surfaces, which should make it a superior tool for studying the interior parts of cold, dense cores. Here we present high-resolution NH 3 observations with the Very Large Array and Green Bank Telescope toward a prestellar core. These observations show an outer region with a fractional NH 3 abundance of X (NH 3 ) = (1.975 ± 0.005) × 10 −8 (±10% systematic), but it also reveals that, after all, the X (NH 3 ) starts to decrease above a H 2 column density of ≈2.6 × 10 22 cm −2 . We derive a density model for the core and find that the break point in the fractional abundance occurs at the density n (H 2 ) ∼ 2 × 10 5 cm −3 , and beyond this point the fractional abundance decreases with increasing density, following the power law n −1.1 . This power-law behavior is well reproduced by chemical models where adsorption onto grains dominates the removal of ammonia and related species from the gas at high densities. We suggest that the break-point density changes from core to core depending on the temperature and the grain properties, but that the depletion power law is anyway likely to be close to n −1 owing to the dominance of accretion in the central parts of starless cores.more » « less
-
Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 .more » « less
-
Abstract Affordable synthetic ammonia (NH3) enables the production of nearly half of the food we eat and is emerging as a renewable energy carrier. Sodium‐promoted chemical looping NH3synthesis at atmospheric pressure using manganese (Mn) is here demonstrated. The looping process may be advantageous when inexpensive renewable hydrogen from electrolysis is available. Avoiding the high pressure of the Haber‐Bosch process by chemical looping using earth‐abundant materials may reduce capital cost, facilitate intermittent operation, and allow operation in geographic areas where infrastructure is less sophisticated. At this early stage, the data suggest that 0.28 m3of a 50 % porosity solid Mn bed may suffice to produce 100 kg NH3per day by chemical looping, with abundant opportunities for improvement.more » « less
-
null (Ed.)Nanosheet-based MFI membranes, known to be highly selective for hydrocarbon isomer separations, exhibit an NH 3 /N 2 mixture separation factor of 2236 with NH 3 permeance of 1.1 × 10 −6 mol m −2 s −1 Pa −1 , and NH 3 /H 2 separation factor of 307 with NH 3 permeance of 2.3 × 10 −6 mol m −2 s −1 Pa −1 at room temperature. Consistent with a competitive sorption-based separation, lower operating temperatures and higher pressures result in increased separation factor. At 323 K, with an equimolar mixed feed of NH 3 /N 2 , the fluxes and separation factors at 3 and 7 bar are 0.13 mol m −2 s −1 and 191, and 0.26 mol m −2 s −1 and 220, respectively. This performance compares favorably with that of other membranes and suggests that MFI membranes can be used in separation and purification processes involving mixtures of NH 3 /N 2 /H 2 encountered in ammonia synthesis and utilization. The membranes also exhibit high performance for the separation of ethane, n -propane and n -butane from H 2 .more » « less
An official website of the United States government

