skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunneling theory for a bilayer graphene quantum dot’s single- and two-electron states
Abstract The tuneability and control of quantum nanostructures in two-dimensional materials offer promising perspectives for their use in future electronics. It is hence necessary to analyze quantum transport in such nanostructures. Material properties such as a complex dispersion, topology, and charge carriers with multiple degrees of freedom, are appealing for novel device functionalities but complicate their theoretical description. Here, we study quantum tunnelling transport across a few-electron bilayer graphene quantum dot. We demonstrate how to uniquely identify single- and two-electron dot states’ orbital, spin, and valley composition from differential conductance in a finite magnetic field. Furthermore, we show that the transport features manifest splittings in the dot’s spin and valley multiplets induced by interactions and magnetic field (the latter splittings being a consequence of bilayer graphene’s Berry curvature). Our results elucidate spin- and valley-dependent tunnelling mechanisms and will help to utilize bilayer graphene quantum dots, e.g., as spin and valley qubits.  more » « less
Award ID(s):
2002275
PAR ID:
10323603
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
New Journal of Physics
Volume:
24
Issue:
4
ISSN:
1367-2630
Page Range / eLocation ID:
043003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interacting electrons in flat bands give rise to a variety of quantum phases. One fundamental aspect of such states is the ordering of the various flavours—such as spin or valley—that the electrons can possess and the excitation spectrum of the broken-symmetry states that they form. These properties cannot be probed directly with electrical transport measurements. The zeroth Landau level of monolayer graphene with fourfold spin–valley degeneracy is a model system for such investigations, but the nature of its broken-symmetry states—particularly at partial fillings—is still not understood. Here we demonstrate a non-invasive spectroscopic technique with a scanning tunnelling microscope and use it to perform measurements of the valley polarization of the electronic wavefunctions and their excitation spectrum in the partially filled zeroth Landau level of graphene. We can extract information such as the strength of the Haldane pseudopotentials that characterize the repulsive interactions underlying the fractional quantum states. Our experiments also demonstrate that fractional quantum Hall phases are built upon broken-symmetry states that persist at partial filling. Our experimental approach quantifies the valley phase diagram of the partially filled Landau level as a model flat-band platform, which is applicable to other graphene-based electronic systems. 
    more » « less
  2. Abstract AB-stacked bilayer graphene has emerged as a fascinating yet simple platform for exploring macroscopic quantum phenomena of correlated electrons. Under large electric displacement fields and near low-density van-Hove singularities, it exhibits a phase with features consistent with Wigner crystallization, including negative dR/dT and nonlinear bias behavior. However, direct evidence for the emergence of an electron crystal at zero magnetic field remains elusive. Here, we explore low-frequency noise consistent with depinning and sliding of a Wigner crystal or solid. At large magnetic fields, we observe enhanced noise at low bias current and a frequency-dependent response characteristic of depinning and sliding, consistent with earlier scanning tunnelling microscopy studies confirming Wigner crystallization in the fractional quantum Hall regime. At zero magnetic field, we detect pronounced AC noise whose peak frequency increases linearly with applied DC current—indicative of collective electron motion. These transport signatures pave the way toward confirming an anomalous Hall crystal. 
    more » « less
  3. Developing alternative paradigms of electronics beyond silicon technology requires the exploration of fundamentally new physical mechanisms, such as the valley-specific phenomena in hexagonal two-dimensional materials. We realize ballistic valley Hall kink states in bilayer graphene and demonstrate gate-controlled current transmission in a four-kink router device. The operations of a waveguide, a valve, and a tunable electron beam splitter are demonstrated. The valley valve exploits the valley-momentum locking of the kink states and reaches an on/off ratio of 8 at zero magnetic field. A magnetic field enables a full-range tunable coherent beam splitter. These results pave a path to building a scalable, coherent quantum transportation network based on the kink states. 
    more » « less
  4. Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice1. A variety of two-dimensional systems have shown evidence for Wigner crystals2,3,4,5,6,7,8,9,10,11 (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunnelling microscopy measurements to directly image a magnetic-field-induced electron WC in Bernal-stacked bilayer graphene and examine its structural properties as a function of electron density, magnetic field and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau level. The WC possesses the expected lattice constant and is robust between filling factor ν ≈ 0.13 and ν ≈ 0.38 except near fillings where it competes with fractional quantum Hall states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the Bragg wavevector of the WC. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher Landau levels. Analysis of individual lattice sites shows signatures that may be related to the quantum zero-point motion of electrons in the WC lattice. 
    more » « less
  5. Altermagnets are crystallographic rotational symmetry breaking spin-ordered states, possessing a net zero magnetization despite manifesting Kramer's nondegenerate bands. Here, we show that momentum-independent local spin-nematic orders in monolayer, Bernal bilayer, and rhombohedral trilayer graphene give rise to 𝑝-wave, 𝑑-wave, and 𝑓-wave altermagnets, respectively, thereby inheriting the topology of linear, quadratic, and cubic free fermion band dispersions that are also described in terms of angular momentum ℓ=1,2, and 3 harmonics in the reciprocal space. The same conclusions also hold inside a spin-triplet nematic superconductor, featuring Majorana altermagnets. Altogether, these findings highlight the importance of electronic band structure in identifying such exotic magnetic orders in quantum materials. We depict the effects of in-plane magnetic fields on altermagnets, and propose spin-disordered alter-valley magnets in these systems. 
    more » « less