This data set was acquired with a Kongsberg Maritime EM122 Multibeam Sonar during R/V Marcus G. Langseth expedition MGL2104 conducted in 2021 (Chief Scientist: Dr. Suzanne Carbotte, Investigators: Dr. Jeffrey Beeson, Dr. Suzanne Carbotte). These data files are of MBSystem-compatible format (format 121, Generic Sonar Format) and include Acoustic Backscatter, Sidescan and Swath Bathymetry data that were processed after acquisition. This data was processed by OSU and is included in the Global Multi-Resolution Topography (GMRT) Synthesis (version 4.0). Data were acquired as part of the project(s): Collaborative Research: Illuminating the Cascadia plate boundary zone and accretionary wedge with a regional-scale ultra-long offset multi-channel seismic study. Funding was provided by NSF award: OCE18-27452.
more »
« less
Processed Gridded Bathymetry Data acquired during R/V Kilo Moana expedition KM1908 (2019)
This data set was acquired with a Kongsberg Maritime EM122 Multibeam Sonar during R/V Kilo Moana expedition KM1908 conducted in 2019 (Chief Scientist: Dr. James Gaherty, Investigators: Dr. James Gaherty, Zach Eilon). These data files are of NetCDF format and include Bathymetry data that were processed after acquisition. Data were acquired as part of the project(s): Collaborative Research: Imaging small-scale convection and structure of the mantle in the south Pacific: a US contribution to an international Pacific Array; Collaborative Research: Imaging small-scale convection and structure of the mantle in the south Pacific: a US contribution to international collaboration Pacific Array. Funding was provided by NSF award(s): OCE16-58214, OCE16-58491.
more »
« less
- Award ID(s):
- 1658214
- PAR ID:
- 10323644
- Publisher / Repository:
- Interdisciplinary Earth Data Alliance (IEDA)
- Date Published:
- Edition / Version:
- 1
- Subject(s) / Keyword(s):
- Bathymetry
- Format(s):
- Medium: X Other: application/x-netcdf
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY We present the first 16 months of data returned from a mobile array of 16 freely floating diving instruments, named mermaid for Mobile Earthquake Recording in Marine Areas by Independent Divers, launched in French Polynesia in late 2018. Our 16 are a subset of the 50 mermaid deployed over a number of cruises in this vast and understudied oceanic province as part of the collaborative South Pacific Plume Imaging and Modeling (SPPIM) project, under the aegis of the international EarthScope-Oceans consortium. Our objective is the hydroacoustic recording, from within the oceanic water column, of the seismic wavefield generated by earthquakes worldwide, and the nearly real-time transmission by satellite of these data, collected above and in the periphery of the South Pacific Superswell. This region, characterized by anomalously elevated oceanic crust and myriad seamounts, is believed to be the surface expression of deeply rooted mantle upwellings. Tomographically imaging Earth’s mantle under the South Pacific with data from these novel instruments requires a careful examination of the earthquake-to-mermaid traveltimes of the high-frequency P-wave detections within the windows selected for reporting by the discrimination algorithms on board. We discuss a workflow suitable for a fast-growing mobile sensor database to pick the relevant arrivals, match them to known earthquakes in global earthquake catalogues, calculate their traveltime residuals with respect to global seismic reference models, characterize their quality and estimate their uncertainty. We detail seismicity rates as recorded by mermaid over 16 months, quantify the completeness of our catalogue and discuss magnitude–distance relations of detectability for our network. The projected lifespan of an individual mermaid is 5 yr, allowing us to estimate the final size of the data set that will be available for future study. To prove their utility for seismic tomography we compare mermaid data quality against ‘traditional’ land seismometers and their low-cost Raspberry Shake counterparts, using waveforms recovered from instrumented island stations in the geographic neighbourhood of our floats. Finally, we provide the first analyses of traveltime anomalies for the new ray paths sampling the mantle under the South Pacific.more » « less
-
This project contributes to an international effort to strategically place temporary arrays of instruments across the Pacific Ocean basin that record the energy from earthquakes. Recent community advances in ocean bottom seismographs will be used to record unique datasets in locations where large gaps in coverage exist today. These data will allow us to infer deformation and variations in mantle temperature related to small-scale convection. As part of the international collaboration, all data will be openly available to scientists worldwide. The project supports the training of graduate and undergraduate students. This project will collect 12-15 months of broadband ocean bottom seismograph (OBS) data in two 30-station arrays in the central and southern Pacific. These arrays, deployed at two distinct plate ages (~30 Ma and ~120 Ma), will address specific critical questions on the dynamics of the oceanic asthenosphere, including its underlying state (temperature, presence of melt, water or other volatiles, and deformation mechanism). The arrays are designed to image the anisotropic velocity signature of small-scale convection, which has been invoked to explain the flattening of the age versus depth curve in old ocean plates, 140-200 km wavelength gravity lineations, and ubiquitous off-axis, non-plume volcanism observed at a variety of scales. Anisotropic surface wave and body wave tomographic models will be supplemented by shear wave splitting and attenuation measurements to obtain a multi-faceted understanding of the asthenosphere and base of the plates. Finally, the order-of-magnitude increases in path coverage for surface and body waves in the south-central Pacific will enable new advances in global tomography.more » « less
-
Abstract The Pacific ocean-bottom seismometer (OBS) Research into Convecting Asthenosphere (ORCA) experiment deployed two 30-station seismic arrays between 2018 and 2020—a US contribution to the international PacificArray project. The “Young ORCA” array deployed on ∼40 Ma central Pacific seafloor had a ∼68% data recovery rate, whereas the “Old ORCA” array deployed on ∼120 Ma southwest Pacific seafloor had a ∼80% recovery rate. We detail here the seismic data quality, spectral characteristics, and engineering challenges of this experiment. We provide information to assist users of this dataset, including OBS orientations and tables of daily data quality for all channels. Preliminary analysis illustrates the utility of these data for surface- and body-wave seismic imaging.more » « less
-
Sr-Nd-Hf-Pb isotopes show that the depleted MORB mantle (DMM) is not homogeneous. The heterogene-ity is attributed to different ages of depletion and/or various degrees of depletion for a given domain of DMM, as well as multiple depletion events, metasomatism, and mixing between DMM and other man-tle components. A mid-ocean ridge basalt, in principle, should contain information about the depletion history of its mantle sources. Here we develop a model to extract the model depletion age and the com-position of a MORB mantle source prior to MORB production using Sr-Nd isotopes or Sr-Hf isotopes in a MORB. The complexities of multiple depletion events, mixing, metasomatism, and enrichment are not addressed in this contribution. The model is based on two assumptions: (i) Isotope evolution in a MORB mantle follows a two-stage evolution model, the first stage in the primitive mantle from the beginning of the solar system to the time of mantle depletion at age Td, and the second stage in the depleted mantle from age Tdto the present day. That is, there is only one single depletion event. The depletion age and degree of depletion of a given mantle source are to be determined. (ii) The trace element composition of a depleted mantle source corresponding to the given MORB can be related to a reference DMM by a log-linear relation with the compatibility index CoI (Zhang, 2014). Applying the two assumptions to the available and large MORB database (Gale et al., 2013), we calculate the global distribution of sub-ridge mantle age and composition. The results show: (i) Mean or reference MORB mantle composition of Salters and Stracke (2004)is close to the average depleted MORB mantle composition, whereas that of Workman and Hart (2005)is significantly more depleted than the average depleted MORB mantle. (ii)Model ages for sub-ridge mantle depletion are mostly between 0.8 to 3.0Ga. (iii) There are large-scale patterns in depletion ages for sub-ridge mantle regions. For example, beneath Mid-Atlantic Ridge, mantle depletion ages are young (0.8 to 2.1 Ga) north of 30◦N, older (1.6 to 4.5 Ga) between 25◦N to 35◦S), and mixed (0.6-4.4 Ga) south of 35◦S. The Pacific sub-ridge mantle has a narrow range of model depletion ages of 1.6 to 3.0 Ga, with a mean of 2.3 Ga. Indian sub-ridge mantle has a younger mean depletion age of 1.7 Ga. These large-scale patterns reveal history of mantle depletion, mantle convection, and possible mixing between older and younger depleted mantles.more » « less
An official website of the United States government
