Abstract
This project contributes to an international effort to strategically place temporary arrays of instruments across the Pacific Ocean basin that record the energy from earthquakes. Recent community advances in- Publisher:
- International Federation of Digital Seismograph Networks
- Publication Year:
- NSF-PAR ID:
- 10323645
- Format(s):
- SEED data
- Size(s):
- 1000 MB
- Award ID(s):
- 1658214
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The Pacific ocean-bottom seismometer (OBS) Research into Convecting Asthenosphere (ORCA) experiment deployed two 30-station seismic arrays between 2018 and 2020—a US contribution to the international PacificArray project. The “Young ORCA” array deployed on ∼40 Ma central Pacific seafloor had a ∼68% data recovery rate, whereas the “Old ORCA” array deployed on ∼120 Ma southwest Pacific seafloor had a ∼80% recovery rate. We detail here the seismic data quality, spectral characteristics, and engineering challenges of this experiment. We provide information to assist users of this dataset, including OBS orientations and tables of daily data quality for all channels. Preliminary analysis illustrates the utility of these data for surface- and body-wave seismic imaging.
-
The Indonesian Throughflow (ITF) is a critical part of the global thermohaline conveyor. It plays a key role in transporting heat from the equatorial Pacific (the Indo-Pacific Warm Pool) to the Indian Ocean and exerts a major control on global climate. The complex tectonic history of the Indonesian Archipelago, a result of continued northward motion and impingement of the Australasian Plate into the Southeast Asian part of the Eurasian Plate, makes it difficult to reconstruct long-term (i.e., million year) ITF history from sites within the archipelago. The best areas to investigate ITF history are downstream in the Indian Ocean, either in the deep ocean away from strong tectonic deformation or along proximal passive margins that are directly under the influence of the ITF. Although previous Ocean Drilling Program and Deep Sea Drilling Project deepwater cores recovered in the Indian Ocean have been used to chart Indo-Pacific Warm Pool influence and, by proxy, ITF variability, these sections lack direct biogeographic and sedimentological evidence of the ITF. International Ocean Discovery Program Expedition 356 will drill a transect of cores over 10° latitude on the northwest shelf (NWS) of Australia to obtain a 5 m.y. record of ITF, Indo-Pacific Warm Pool, and climatemore »
-
The Indonesian Throughflow (ITF) is a critical part of the global thermohaline conveyor. It plays a key role in transporting heat from the equatorial Pacific (the Indo-Pacific Warm Pool) to the Indian Ocean and exerts a major control on global climate. The complex tectonic history of the Indonesian archipelago, a result of continued northward motion and impingement of the Australasian plate into the southeast Asian part of the Eurasian plate, makes it difficult to reconstruct long-term (i.e., million year) ITF history from sites within the archipelago. The best areas to investigate ITF history are downstream in the Indian Ocean, either in the deep ocean away from strong tectonic deformation or along proximal passive margins that are directly under the influence of the ITF. Although previous Ocean Drilling Program and Deep Sea Drilling Project deep-water cores recovered in the Indian Ocean have been used to chart Indo-Pacific Warm Pool influence and, by proxy, ITF variability, these sections lack direct biogeographic and sedimentological evidence of the ITF. International Ocean Discovery Program Expedition 356 cored seven sites covering a latitudinal range of 29°S–18°S off the northwest coast of Australia to obtain a 5 My record of the ITF, Indo-Pacific Warm Pool, and climatemore »
-
The Indonesian Throughflow (ITF) is a critical part of the global thermohaline conveyor. It plays a key role in transporting heat from the equatorial Pacific (the Indo-Pacific Warm Pool) to the Indian Ocean and exerts a major control on global climate. The complex tectonic history of the Indonesian archipelago, a result of continued northward motion and impingement of the Australasian plate into the southeast Asian part of the Eurasian plate, makes it difficult to reconstruct long-term (i.e., million year) ITF history from sites within the archipelago. The best areas to investigate ITF history are downstream in the Indian Ocean, either in the deep ocean away from strong tectonic deformation or along proximal passive margins that are directly under the influence of the ITF. Although previous Ocean Drilling Program and Deep Sea Drilling Project deepwater cores recovered in the Indian Ocean have been used to chart Indo-Pacific Warm Pool influence and, by proxy, ITF variability, these sections lack direct biogeographic and sedimentological evidence of the ITF. International Ocean Discovery Program Expedition 356 cored seven sites covering a latitudinal range of 29°S–18°S off the northwest coast of Australia to obtain a 5 My record of ITF, Indo-Pacific Warm Pool, and climate evolutionmore »
-
SUMMARY The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve $\ge $3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materialsmore »