Abstract The Pacific ocean-bottom seismometer (OBS) Research into Convecting Asthenosphere (ORCA) experiment deployed two 30-station seismic arrays between 2018 and 2020—a US contribution to the international PacificArray project. The “Young ORCA” array deployed on ∼40 Ma central Pacific seafloor had a ∼68% data recovery rate, whereas the “Old ORCA” array deployed on ∼120 Ma southwest Pacific seafloor had a ∼80% recovery rate. We detail here the seismic data quality, spectral characteristics, and engineering challenges of this experiment. We provide information to assist users of this dataset, including OBS orientations and tables of daily data quality for all channels. Preliminary analysis illustrates the utility of these data for surface- and body-wave seismic imaging.
more »
« less
PacificORCA
This project contributes to an international effort to strategically place temporary arrays of instruments across the Pacific Ocean basin that record the energy from earthquakes. Recent community advances in ocean bottom seismographs will be used to record unique datasets in locations where large gaps in coverage exist today. These data will allow us to infer deformation and variations in mantle temperature related to small-scale convection. As part of the international collaboration, all data will be openly available to scientists worldwide. The project supports the training of graduate and undergraduate students. This project will collect 12-15 months of broadband ocean bottom seismograph (OBS) data in two 30-station arrays in the central and southern Pacific. These arrays, deployed at two distinct plate ages (~30 Ma and ~120 Ma), will address specific critical questions on the dynamics of the oceanic asthenosphere, including its underlying state (temperature, presence of melt, water or other volatiles, and deformation mechanism). The arrays are designed to image the anisotropic velocity signature of small-scale convection, which has been invoked to explain the flattening of the age versus depth curve in old ocean plates, 140-200 km wavelength gravity lineations, and ubiquitous off-axis, non-plume volcanism observed at a variety of scales. Anisotropic surface wave and body wave tomographic models will be supplemented by shear wave splitting and attenuation measurements to obtain a multi-faceted understanding of the asthenosphere and base of the plates. Finally, the order-of-magnitude increases in path coverage for surface and body waves in the south-central Pacific will enable new advances in global tomography.
more »
« less
- Award ID(s):
- 1658214
- PAR ID:
- 10323645
- Publisher / Repository:
- International Federation of Digital Seismograph Networks
- Date Published:
- Format(s):
- Medium: X Size: 1000 MB Other: SEED data
- Size(s):
- 1000 MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Small‐scale convection beneath the oceanic plates has been invoked to explain off‐axis nonplume volcanism, departure from simple seafloor depth‐age relationships, and intraplate gravity lineations. We deployed 30 broadband ocean bottom seismometer stations on ∼40 Ma Pacific seafloor in a region notable for gravity anomalies, measured by satellite altimetry, elongated parallel to plate motion.P‐wave teleseismic tomography reveals alternating upper mantle velocity anomalies on the order of ±2%, aligned with the gravity lineations. These features, which correspond to ∼300°–500°K lateral temperature contrast, and possible hydrous or carbonatitic partial melt, are—surprisingly—strongest between 150 and 260 km depth, indicating rapid vertical motions through a low‐viscosity asthenospheric channel. Coherence and admittance analysis of gravity and topography using new multibeam bathymetry soundings substantiates the presence of mantle density variations, and forward modeling predicts gravity anomalies that qualitatively match observed lineations. This study provides observational support for small‐scale convective rolls beneath the oceanic plates.more » « less
-
Abstract This study probes the lithosphere‐asthenosphere system beneath 155 Ma Pacific seafloor using teleseismic S‐to‐p receiver functions at the Pacific Lithosphere Anisotropy and Thickness Experiment project ocean‐bottom‐seismometers. Within the lithosphere, a significant velocity decrease at 33–50 km depth is observed. This mid‐lithospheric discontinuity is consistent with the velocity contrast between the background mantle and thin, trapped layers of crystallized partial melt, in the form of either dolomite or garnet granulite. These melts possibly originated from deeper asthenospheric melting beneath the flanks of spreading centers, and were transported within the cooling lithosphere. A positive velocity increase of 3%–6% is observed at 130–155 km depth and is consistent with the base of a layer with partial melt in the asthenosphere. A shear velocity decrease associated with the lithosphere‐asthenosphere boundary at 95–115 km depth is permitted by the data, but is not required.more » « less
-
International Ocean Discovery Program (IODP) Expedition 378 is designed to recover the first comprehensive set of Paleogene sedimentary sections from a transect of sites strategically positioned in the South Pacific to reconstruct key changes in oceanic and atmospheric circulation. These high southern–latitude sites will provide an unparalleled opportunity to add crucial new data and geographic coverage to existing reconstructions of Paleogene climate. As the world’s largest ocean, the Pacific Ocean is intricately linked to major changes in the global climate system. Previous drilling in the low-latitude Pacific Ocean during Ocean Drilling Program (ODP) Legs 138 and 199 and Integrated Ocean Drilling Program Expeditions 320 and 321 provided new insights into the mechanisms of the climate and carbon system, productivity changes across the zone of divergence, time-dependent calcium carbonate dissolution, bio- and magnetostratigraphy, the location of the Intertropical Convergence Zone, and evolutionary patterns for times of climatic change and upheaval. Expedition 378 in the South Pacific Ocean uniquely complements this work because appropriate high-latitude records are unobtainable in the Northern Hemisphere of the Pacific Ocean. To optimize the recovery of Paleogene carbonates buried under red clay sequences at present latitudes of 40°–52°S and enable a full range of paleoceanographic proxy-based investigations, Expedition 378 will drill a transect of sites primarily situated along magnetic Anomaly 25n on ~56 Ma crust. Additional sites are located on 40 Ma crust (Anomaly 18). The drilling strategy will also redrill the sedimentary record at Deep Sea Drilling Project (DSDP) Site 277 to obtain a continuous record of a previously spot-cored, classic Paleogene high-latitude site and provide a crucial, continuous record of the shallow Subantarctic South Pacific Ocean from the Paleocene to late Oligocene. These new cores and data will significantly contribute to the challenges of the “Climate and Ocean Change: Reading the Past, Informing the Future” theme of the IODP Science Plan (How does Earth’s climate system respond to elevated levels of atmospheric CO2? How resilient is the ocean to chemical perturbations?). Furthermore, Expedition 378 will provide material from the far South Pacific Ocean in an area with no previous scientific drilling as part of a major regional slate of expeditions in the Southern Ocean to fill a critical need for high-latitude climate reconstructions. The operational plan is to occupy seven primary sites (with two proposed alternate sites) along an east–west transect to recover the most complete sedimentary succession possible, which includes coring three holes at each site with wireline logging operations at the two deepest penetration sites. Basement will be tagged in at least one of the holes at each site.more » « less
-
True polar wander, or TPW, is the rotation of the entire mantle–crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30◦ rotation during Late Jurassic time (160–145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth’s surface area and may not reflect motion of the entire mantle–crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth’s surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167–133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49◦–0.74◦ My−1 except for an interval between Kimmeridgian and Tithonian time (157–147 Ma), during which it underwent northward motion at 1.45◦ ± 0.76◦ My−1 (1σ ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30◦) rotation as continental lithosphere in the 160–145 Ma interval. Such coherent motion of a large majority of the Earth’s surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth’s inertia tensor in the Late Jurassic.more » « less
An official website of the United States government
