Why the Challenger Deep, the deepest point on Earth’s solid surface, is so deep is unclear, but part of the reason must be the age and density of the downgoing plate. Northwest Pacific oceanic crust subducting in the Izu-Bonin-Mariana Trench is Cretaceous and Jurassic, but the age and nature of Pacific oceanic crust subducting in the southernmost Mariana Trench remains unknown. Here we present the first study of seafloor basalts recovered by the full-ocean-depth crewed submersible Fendouzhe from the deepest seafloor around the Challenger Deep, from both the overriding and downgoing plates. 40Ar/39Ar ages indicate that downgo¬ing basalts are Early Cretaceous (ca. 125 Ma), indicating they are part of the Pacific plate rather than the nearby Oligocene Caroline microplate. Downgoing-plate basalts are slightly enriched in incompatible elements but have similar trace element and Hf isotope compositions to other northwest Pacific mid-ocean ridge basalts (MORBs). They also have slightly enriched Sr-Nd-Pb isotope compositions like those of the Indian mantle domain. These features may have formed with contributions from plume-derived components via plume-ridge interac¬tions. One sample from the overriding plate gives an 40Ar/39Ar age of ca. 55 Ma, about the same age as subduction initiation, to form the Izu-Bonin-Mariana convergent margin. Our results suggest that 50%–90% of the Pb budget of Mariana arc magmas is derived from the subducted MORBs with Indian-type isotope affinity.
more »
« less
Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander
True polar wander, or TPW, is the rotation of the entire mantle–crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30◦ rotation during Late Jurassic time (160–145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth’s surface area and may not reflect motion of the entire mantle–crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth’s surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167–133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49◦–0.74◦ My−1 except for an interval between Kimmeridgian and Tithonian time (157–147 Ma), during which it underwent northward motion at 1.45◦ ± 0.76◦ My−1 (1σ ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30◦) rotation as continental lithosphere in the 160–145 Ma interval. Such coherent motion of a large majority of the Earth’s surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth’s inertia tensor in the Late Jurassic.
more »
« less
- Award ID(s):
- 1723023
- PAR ID:
- 10078729
- Date Published:
- Journal Name:
- Earth and planetary science letters
- Volume:
- 490
- ISSN:
- 0012-821X
- Page Range / eLocation ID:
- 20-30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Contributions of heat and/or mass from mafic magmas are commonly invoked in models of voluminous granodiorite and andesite generation in magmatic and volcanic arcs worldwide. However, mafic intrusions are a volumetrically minor component in most arc batholiths. This is the case in the Sierra Nevada batholith, California, USA, where gabbro and diorite plutons are smaller and less abundant than the granitoid suites that make up the bulk of the batholith. Here, we constrain the timing and geochemistry of mafic intrusions in the Sierra Nevada batholith to assess the role of these compositions in arc batholith construction. Previous detailed studies on a limited number of mafic intrusions demonstrate that they formed penecontemporaneously with the felsic batholith, but there is a need for a broader survey of mafic plutons using modern geochronological techniques. New U-Pb zircon ages for 13 gabbro to diorite plutons and geochemistry from 17 mafic intrusions in the eastern Sierra Nevada batholith document two main episodes of mafic magmatism in the eastern Sierra Nevada batholith, from 168 Ma to 145 Ma and from 100 Ma to 89 Ma. These episodes overlap with the ages of granitoid plutons in the eastern Sierra Nevada batholith, including the Late Jurassic Palisade Crest and Late Cretaceous John Muir intrusive suites, in addition to other felsic plutons dated in the eastern Sierra Nevada batholith. Non-primitive mineral compositions in the mafic bodies indicate that their parental magmas are the evolved products of mantle-derived basalts that first differentiated in the lower crust prior to ascent and crystallization in the upper crust. The presence of rocks with cumulate textures, as well as a wide range of bulk-rock compositions (SiO2 wt% 38−64, Mg# 39−74), show that magmatic differentiation continued within each mafic body after intrusion into the upper crust. Sr/Y ratios in melt-like (i.e., non-cumulate) mafic samples suggest that the crustal thickness of the Sierra Nevada batholith was roughly 30 km in the Early Jurassic and increased to ∼44 km by the Late Cretaceous. Concomitant intrusion of mafic melts along with voluminous granitoid plutons supports mantle melting as a major contributor of heat and magmatic volumes to the crust during construction of the eastern Sierra Nevada batholith.more » « less
-
Abstract We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, an ~500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada Batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate (1) the timing and rates of Mesozoic arc construction, (2) mechanisms of sediment incorporation into the lower crust, and (3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use U-Pb detrital zircon geochronology of four quartzites and one metatexite migmatite to investigate the origin of the lower-crustal Cucamonga metasedimentary sequence, and U-Pb zircon petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga metasedimentary sequence shares broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a late Paleozoic to early Mesozoic forearc or intra-arc basin marginal to the Southern California Batholith. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750 °C), metamorphic events at ca. 124 Ma and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 Ma to 75 Ma and culminated in a magmatic surge from ca. 90 Ma to 75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by the emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event.more » « less
-
The paleomagnetic record is an archive of Earth’s geophysical history, informing reconstructions of ancient plate motions and probing the core via the geodynamo. We report a robust 3.25-billion-year-old (Ga) paleomagnetic pole from the East Pilbara Craton, Western Australia. Together with previous results from the East Pilbara between 3.34 and 3.18 Ga, this pole enables the oldest reconstruction of time-resolved lithospheric motions, documenting 160 My of both latitudinal drift and rotation at rates of at least 0.55°/My. Motions of this style, rate, and duration are difficult to reconcile with true polar wander or stagnant-lid geodynamics, arguing strongly for mobile-lid geodynamics by 3.25 Ga. Additionally, this pole includes the oldest documented geomagnetic reversal, reflecting a stably dipolar, core-generated Archean dynamo.more » « less
-
Abstract Oceanic hotspots with extreme enriched mantle radiogenic isotopic signatures—including low143Nd/144Nd indicative of subducted continental crust—are linked to plume conduits sampling the southern hemispheric mantle. However, the mechanisms responsible for concentrating subducted continental crust in the austral mantle are unknown. We show that subduction of sediments and subduction eroded material, and lower continental crust delamination, cannot generate this spatially coherent austral geochemical domain. However, continental collisions—associated with the assembly of Gondwana‐Pangea—were positioned predominantly in the southern hemisphere during the late Neoproterozoic appearance of widespread continental ultra‐high‐pressure metamorphic terranes, which marked the onset of deep subduction of upper continental crust. We propose that deep subduction of upper continental crust at ancient rifted‐passive margins during ca. 650‐300 Ma austral supercontinent assembly resulted in enhanced upper continental crust delivery into the southern hemisphere mantle. Similarly enriched mantle domains are absent in the boreal mantle plume source, for two reasons. First, continental crust subducted after 300 Ma—when the continents drifted into the northern hemisphere—has had insufficient time to return to the surface in plumes sampling the northern hemisphere mantle. Second, before the first known appearance of continental ultra‐high‐pressure rocks at 650 Ma, deep subduction of upper continental crust was uncommon, limiting its subduction into the northern (and southern) hemisphere mantle earlier in Earth history. Our model implies a recent formation of the austral enriched mantle domain, explains the geochemical dichotomy between austral and boreal plume sources, and may explain why there are twice as many austral hotspots as boreal hotspots.more » « less
An official website of the United States government

