skip to main content


Title: Asymmetry Learning for Counterfactually-invariant Classification in OOD Tasks
Generalizing from observed to new related environments (out-of-distribution) is central to the reliability of classifiers. However, most classifiers fail to predict label from input when the change in environment is due a (stochastic) input transformation not observed in training, as in training we observe , where is a hidden variable. This work argues that when the transformations in train and test are (arbitrary) symmetry transformations induced by a collection of known equivalence relations, the task of finding a robust OOD classifier can be defined as finding the simplest causal model that defines a causal connection between the target labels and the symmetry transformations that are associated with label changes. We then propose a new learning paradigm, asymmetry learning, that identifies which symmetries the classifier must break in order to correctly predict in both train and test. Asymmetry learning performs a causal model search that, under certain identifiability conditions, finds classifiers that perform equally well in-distribution and out-of-distribution. Finally, we show how to learn counterfactually-invariant representations with asymmetry learning in two physics tasks.  more » « less
Award ID(s):
1943364 1918483
PAR ID:
10323654
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generalizing from observed to new related environments (out-of-distribution) is central to the reliability of classifiers. However, most classifiers fail to predict label from input when the change in environment is due a (stochastic) input transformation not observed in training, as in training we observe , where is a hidden variable. This work argues that when the transformations in train and test are (arbitrary) symmetry transformations induced by a collection of known equivalence relations, the task of finding a robust OOD classifier can be defined as finding the simplest causal model that defines a causal connection between the target labels and the symmetry transformations that are associated with label changes. We then propose a new learning paradigm, asymmetry learning, that identifies which symmetries the classifier must break in order to correctly predict in both train and test. Asymmetry learning performs a causal model search that, under certain identifiability conditions, finds classifiers that perform equally well in-distribution and out-of-distribution. Finally, we show how to learn counterfactually-invariant representations with asymmetry learning in two physics tasks. 
    more » « less
  2. null (Ed.)
    Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multi-class classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach. 
    more » « less
  3. In general, graph representation learning methods assume that the train and test data come from the same distribution. In this work we consider an underexplored area of an otherwise rapidly developing field of graph representation learning: The task of out-of-distribution (OOD) graph classification, where train and test data have different distributions, with test data unavailable during training. Our work shows it is possible to use a causal model to learn approximately invariant representations that better extrapolate between train and test data. Finally, we conclude with synthetic and real-world dataset experiments showcasing the benefits of representations that are invariant to train/test distribution shifts. 
    more » « less
  4. null (Ed.)
    This paper presents a policy-driven sequential image augmentation approach for image-related tasks. Our approach applies a sequence of image transformations (e.g., translation, rotation) over a training image, one transformation at a time, with the augmented image from the previous time step treated as the input for the next transformation. This sequential data augmentation substantially improves sample diversity, leading to improved test performance, especially for data-hungry models (e.g., deep neural networks). However, the search for the optimal transformation of each image at each time step of the sequence has high complexity due to its combination nature. To address this challenge, we formulate the search task as a sequential decision process and introduce a deep policy network that learns to produce transformations based on image content. We also develop an iterative algorithm to jointly train a classifier and the policy network in the reinforcement learning setting. The immediate reward of a potential transformation is defined to encourage transformations producing hard samples for the current classifier. At each iteration, we employ the policy network to augment the training dataset, train a classifier with the augmented data, and train the policy net with the aid of the classifier. We apply the above approach to both public image classification benchmarks and a newly collected image dataset for material recognition. Comparisons to alternative augmentation approaches show that our policy-driven approach achieves comparable or improved classification performance while using significantly fewer augmented images. The code is available at https://github.com/Paul-LiPu/rl_autoaug. 
    more » « less
  5. The Random Forests classifier, a widely utilized off-the-shelf classification tool, assumes training and test samples come from the same distribution as other standard classifiers. However, in safety-critical scenarios like medical diagnosis and network attack detection, discrepancies between the training and test sets, including the potential presence of novel outlier samples not appearing during training, can pose significant challenges. To address this problem, we introduce the Conformalized Semi-Supervised Random Forest (CSForest), which couples the conformalization technique Jackknife+aB with semi-supervised tree ensembles to construct a set-valued prediction đ¶(đ‘„). Instead of optimizing over the training distribution, CSForest employs unlabeled test samples to enhance accuracy and flag unseen outliers by generating an empty set. Theoretically, we establish CSForest to cover true labels for previously observed inlier classes under arbitrarily label-shift in the test data. We compare CSForest with state-of-the-art methods using synthetic examples and various real-world datasets, under different types of distribution changes in the test domain. Our results highlight CSForest’s effective prediction of inliers and its ability to detect outlier samples unique to the test data. In addition, CSForest shows persistently good performance as the sizes of the training and test sets vary. Codes of CSForest are available at https://github.com/yujinhan98/CSForest. 
    more » « less