skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1918483

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present Rhyme, an expressive language designed for high-level data manipulation, with a primary focus on querying and transforming nested structures such as JSON and tensors, while yielding nested structures as output. Rhyme draws inspiration from a diverse range of declarative languages, including Datalog, JQ, JSONiq, Einstein summation (Einsum), GraphQL, and more recent functional logic programming languages like Verse. It has a syntax that closely resembles existing object notation, is compositional, and has the ability to perform query optimization and code generation through the construction of an intermediate representation (IR). Our IR comprises loop-free and branch-free code with program structure implicitly captured via dependencies. To demonstrate Rhyme’s versatility, we implement Rhyme in JavaScript (as an embedded DSL) and illustrate its application across various domains, showcasing its ability to express common data manipulation queries, tensor expressions (à la Einsum), and more. 
    more » « less
  2. Graph-based intermediate representations (IRs) are widely used for powerful compiler optimizations, either interprocedurally in pure functional languages, or intraprocedurally in imperative languages. Yet so far, no suitable graph IR exists for aggressive global optimizations in languages with both effects and higher-order functions: aliasing and indirect control transfers make it difficult to maintain sufficiently granular dependency information for optimizations to be effective. To close this long-standing gap, we propose a novel typed graph IR combining a notion of reachability types with an expressive effect system to compute precise and granular effect dependencies at an affordable cost while supporting local reasoning and separate compilation. Our high-level graph IR imposes lexical structure to represent structured control flow and nesting, enabling aggressive and yet inexpensive code motion and other optimizations for impure higher-order programs. We formalize the new graph IR based on a λ-calculus with a reachability type-and-effect system along with a specification of various optimizations. We present performance case studies for tensor loop fusion, CUDA kernel fusion, symbolic execution of LLVM IR, and SQL query compilation in the Scala LMS compiler framework using the new graph IR. We observe significant speedups of up to 21x.

     
    more » « less
  3. Existing causal models for link prediction assume an underlying set of inherent node factors—an innate characteristic defined at the node’s birth—that governs the causal evolution of links in the graph. In some causal tasks, however, link formation ispath-dependent: the outcome of link interventions depends on existing links. Unfortunately, these existing causal methods are not designed for path-dependent link formation, as the cascading functional dependencies between links (arising frompath dependence) are either unidentifiable or require an impractical number of control variables. To overcome this, we develop the first causal model capable of dealing with path dependencies in link prediction. In this work, we introduce the concept of causal lifting, an invariance in causal models of independent interest that, on graphs, allows the identification of causal link prediction queries using limited interventional data. Further, we show how structural pairwise embeddings exhibit lower bias and correctly represent the task’s causal structure, as opposed to existing node embeddings, e.g. graph neural network node embeddings and matrix factorization. Finally, we validate our theoretical findings on three scenarios for causal link prediction tasks: knowledge base completion, covariance matrix estimation and consumer-product recommendations.

     
    more » « less
  4. Symbolic execution is a powerful program analysis and testing technique. Symbolic execution engines are usually implemented as interpreters, and the induced interpretation over-head can dramatically inhibit performance. Alternatively, implementation choices based on instrumentation provide a limited ability to transform programs. However, the use of compilation and code generation techniques beyond simple instrumentation remains underexplored for engine construction, leaving potential performance gains untapped. In this paper, we show how to tap some of these gains using sophisticated compilation techniques: We present Gensym, an optimizing symbolic-execution compiler that generates symbolic code which explores paths and generates tests in parallel. The key insight of GensYmis to compile symbolic execution tasks into cooperative concurrency via continuation-passing style, which further enables efficient parallelism. The design and implementation of Gensym is based on partial evaluation and generative programming techniques, which make it high-level and performant at the same time. We compare the performance of Gensym against the prior symbolic-execution compiler LLSC and the state-of-the-art symbolic interpreter KLEE. The results show an average 4.6× speedup for sequential execution and 9.4× speedup for parallel execution on 20 benchmark programs. 
    more » « less
  5. This work provides the first theoretical study on the ability of graph Message Passing Neural Networks (gMPNNs) -- such as Graph Neural Networks (GNNs) -- to perform inductive out-of-distribution (OOD) link prediction tasks, where deployment (test) graph sizes are larger than training graphs. We first prove non-asymptotic bounds showing that link predictors based on permutation-equivariant (structural) node embeddings obtained by gMPNNs can converge to a random guess as test graphs get larger. We then propose a theoretically-sound gMPNN that outputs structural pairwise (2-node) embeddings and prove non-asymptotic bounds showing that, as test graphs grow, these embeddings converge to embeddings of a continuous function that retains its ability to predict links OOD. Empirical results on random graphs show agreement with our theoretical results. 
    more » « less
  6. Deep learning models tend not to be out-of-distribution robust primarily due to their reliance on spurious features to solve the task. Counterfactual data augmentations provide a general way of (approximately) achieving representations that are counterfactual-invariant to spurious features, a requirement for out-of-distribution (OOD) robustness. In this work, we show that counterfactual data augmentations may not achieve the desired counterfactual-invariance if the augmentation is performed by a context-guessing machine, an abstract machine that guesses the most-likely context of a given input. We theoretically analyze the invariance imposed by such counterfactual data augmentations and describe an exemplar NLP task where counterfactual data augmentation by a context-guessing machine does not lead to robust OOD classifiers. 
    more » « less
  7. Roll-to-roll printing has significantly shortened the time from design to production of sensors and IoT devices, while being cost-effective for mass production. But due to less manufacturing tolerance controls available, properties such as sensor thickness, composition, roughness, etc., cannot be precisely controlled. Since these properties likely affect the sensor behavior, roll-to-roll printed sensors require validation testing before they can be deployed in the field. In this work, we improve the testing of Nitrate sensors that need to be calibrated in a solution of known Nitrate concentration for around 1–2 days. To accelerate this process, we observe the initial behavior of the sensors for a few hours, and use a physics-informed machine learning method to predict their measurements 24 hours in the future, thus saving valuable time and testing resources. Due to the variability in roll-to-roll printing, this prediction task requires models that are robust to changes in properties of the new test sensors. We show that existing methods fail at this task and describe a physics-informed machine learning method that improves the prediction robustness to different testing conditions (≈ 1.7× lower in real-world data and ≈ 5× lower in synthetic data when compared with the current state-of-the-art physics-informed machine learning method). 
    more » « less
  8. The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same cluster. We make three contributions. First, through analysis of data from real-world video streaming sessions, we show (i) apriori clustering prevents learning from related clusters; and (ii) factors such as the Time to First Byte (TTFB) are key components of chunk download times but not easily incorporated into existing prediction approaches. Second, we propose Xatu, a new prediction approach that jointly learns a neural network sequence model with an interpretable automatic session clustering method. Xatu learns clustering rules across all sessions it deems relevant, and models sequences with multiple chunk-dependent features (e.g., TTFB) rather than just throughput. Third, evaluations using the above datasets and emulation experiments show that Xatu significantly improves prediction accuracies by 23.8% relative to CS2P (a state-of-the-art predictor). We show Xatu provides substantial performance benefits when integrated with multiple ABR algorithms including MPC (a well studied ABR algorithm), and FuguABR (a recent algorithm using stochastic control) relative to their default predictors (CS2P and a fully connected neural network respectively). Further, Xatu combined with MPC outperforms Pensieve, an ABR based on deep reinforcement learning. 
    more » « less
  9. Generalizing from observed to new related environments (out-of-distribution) is central to the reliability of classifiers. However, most classifiers fail to predict label from input when the change in environment is due a (stochastic) input transformation not observed in training, as in training we observe , where is a hidden variable. This work argues that when the transformations in train and test are (arbitrary) symmetry transformations induced by a collection of known equivalence relations, the task of finding a robust OOD classifier can be defined as finding the simplest causal model that defines a causal connection between the target labels and the symmetry transformations that are associated with label changes. We then propose a new learning paradigm, asymmetry learning, that identifies which symmetries the classifier must break in order to correctly predict in both train and test. Asymmetry learning performs a causal model search that, under certain identifiability conditions, finds classifiers that perform equally well in-distribution and out-of-distribution. Finally, we show how to learn counterfactually-invariant representations with asymmetry learning in two physics tasks. 
    more » « less