skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching for Hidden Microearthquakes using Data-based, Physics-based, and Hybrid Models: Implications for Salt Dome Monitoring
Earthquakes in stable salt domes are few, with a notable increase in the rate of seismicity prior to catastrophic events, such as the collapse of salt caverns used to store hydrocarbons. Cavern collapse, subsequent gas leakage, and the formation of sinkholes pose a significant hazard for local communities, given that they can disrupt normal societal functions, have various socio-economic impacts, and may result in the evacuation of residents. In Louisiana, one such event was the Bayou Corne collapse in 2012. Following reports of unusual ground tremors, we began monitoring seismicity at the Sorrento salt dome in February 2020. The goal of this study is to improve our understanding of the subsurface processes and their impact on the mechanical integrity of salt domes; we do this by examining the spatio-temporal evolution of the seismicity. We deployed an ~5 km x 4 km nodal array of 12-17 stations, with interstation distances of 0.2 km to 1.9 km, across the dome and recorded eight months of data that were sampled at 500 Hz. Sorrento dome events are usually low in magnitude, often with emergent P-wave onsets, as well as P-waves shrouded in the coda of preceding events, during swarms. Such characteristics make the events difficult to identify using standard automatic detection and location procedures. We first evaluate current methods using an STA/LTA algorithm, coincidence event detectors, and pre-trained, deep-learning detectors and pickers. We find that detection of consistent P-wave phases across several stations for the same event is challenging and poses a major problem for event association and location. To address this problem, we initiate a manual review of all initial event associations to eliminate false positives that could incorrectly inflate the number of events in the catalog. We, therefore, developed a custom-trained detector and picker that outperformed other methods, and it identified multiple events that were recorded by >70% of the stations in the array. Our approach is well-suited for identifying events with emergent P-wave onsets and short durations (~2-10 s), and our method correctly identified a spike in seismicity in the days leading up to a well failure at the dome. Our methodology can be easily adapted for similar types of studies, such as volcano, mine and dam monitoring, and geothermal exploration.  more » « less
Award ID(s):
2045983
PAR ID:
10323694
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Southern California Earthquake Center 2021 Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The US Gulf Coast has several massive underground caverns within salt domes. These caverns can store vast amounts of hydrocarbons, including the US Strategic Petroleum Reserve, used to increase energy supplies during emergency shortages. Unstable caverns can collapse, leading to sinkhole formation and the release of gas. Previous studies have identified elevated seismicity and surface deformation as precursors to salt cavern collapse and sinkhole formation. However, identifying sporadic seismicity can be complicated, requiring complex methods for robust detection and characterization of events, especially in high-noise settings. We investigate deformation of the Sorrento salt dome in Louisiana using 8 months of data from seismic arrays first deployed in February 2020. Our arrays are comprised of 12 to 17 SmartSolo 3C seismic nodes, spaced 0.2-1.9 km and installed around the dome. We recorded more than 1.2 Tb of data, sampled at 500 Hz. Waveforms of identified events range from <1 s to over 30 s in length, rendering power detection methods like the STA/LTA inefficient. Building on recent studies that use machine learning methods to identify small magnitude (Mw -2.0 to 2.0) earthquakes, we developed a custom-trained convolutional neural network and applied it over sliding windows of the waveforms to detect earthquakes, pick P-wave arrivals, and reduce false positives. We correlated waveforms across all stations and identified events when they were observed on at least 60% of the array stations. We used spectrograms to infer fluid content around sources and to eliminate anthropogenic signals, including but not limited to, helicopters, trains, and boats from the catalog. Event locations were used to identify microearthquake swarms within the dome. Our preliminary results show elevated seismicity in the days preceding a well failure, suggesting our method can be used to monitor underground caverns and similar settings, such as mines, dams, and geothermal sites. 
    more » « less
  2. The energy transition to meet net-zero emissions by 2050 has created demand for underground caverns needed to safely store CO2, hydrocarbon, hydrogen, and wastewater. Salt domes are ideal for underground storage needs because of their low permeability and affordable costs, which makes them the preferred choice for large-scale storage projects like the US Strategic Petroleum Reserves. However, the uneven upward movement of salt spines can create drilling problems and breach cavern integrity, releasing harmful gases into overlying aquifers and endangering nearby communities. Here, we present a novel application of data-driven geophysical methods combined with machine learning that improves salt dome characterization during feasibility studies for site selection and potentially advances the effectiveness of current early-warning systems. We utilize long-term, non-invasive seismic monitoring to investigate deformation processes at the Sorrento salt dome in Louisiana. We developed a hybrid autoencoder model and applied it to an 8-month dataset from a nodal array deployed in 2020, to produce a high-fidelity microearthquake catalog. Our hybrid model outperformed traditional event detection techniques and other neural network detectors. Seismic signals from storms, rock bursts, trains, aircraft, and other anthropogenic sources were identified. Clusters of microearthquakes were observed along two N-S trends referred to as Boundary Shear Zones (BSZ), along which we infer that salt spines are moving differentially. Time-lapse sonar surveys were used to confirm variations in propagation rates within salt spines and assess deformation within individual caverns. Seismicity along one BSZ is linked with a well failure incident that created a 30-ft wide crater at the surface in 2021. This study introduces a novel method for mapping spatial and temporal variations in salt shear zones and provides insights into the subsurface processes that can compromise the safety and lifetime of underground storage sites. 
    more » « less
  3. Abstract Seismicity at restless volcanoes commonly features a variety of signal types reflecting both volcanotectonic and fluid-driven source processes. However, traditional catalogs of seismicity are often incomplete, especially concerning events with emergent onsets such as those driven by the dynamics of magmatic and hydrothermal fluids. The detection of all discrete events and continuous seismic tremors, regardless of the underlying source processes, would therefore improve the ability of monitoring agencies to forecast eruptions and mitigate their associated hazards. We present a workflow for generalized detection of seismic events based on the network covariance matrix (Seydoux et al., 2016). Our contributions enable the method to simultaneously detect continuous and short-duration (<∼10 s) events, provide information about the frequency content of the signals, and to refine the initial detection times by an order of magnitude (from window lengths of 75 to 7.5 s). We test the workflow on a 15-month record of seismicity with 23 stations at Mammoth Mountain, California (July 2012–October 2013) and detect 62% of long-period events and 94% of volcanotectonic events in the existing Northern California Earthquake Data Center catalog. In addition, ∼3000 events are not included in the catalog, and thousands of tremor signals are found. The method is suitable for near-real-time analysis of continuous waveforms and can provide a valuable supplement to existing algorithms to improve the completeness of catalogs used for monitoring volcanoes. 
    more » « less
  4. Abstract The 2016–2017 central Italy seismic sequence occurred on an 80 km long normal-fault system. The sequence initiated with the Mw 6.0 Amatrice event on 24 August 2016, followed by the Mw 5.9 Visso event on 26 October and the Mw 6.5 Norcia event on 30 October. We analyze continuous data from a dense network of 139 seismic stations to build a high-precision catalog of ∼900,000 earthquakes spanning a 1 yr period, based on arrival times derived using a deep-neural-network-based picker. Our catalog contains an order of magnitude more events than the catalog routinely produced by the local earthquake monitoring agency. Aftershock activity reveals the geometry of complex fault structures activated during the earthquake sequence and provides additional insights into the potential factors controlling the development of the largest events. Activated fault structures in the northern and southern regions appear complementary to faults activated during the 1997 Colfiorito and 2009 L’Aquila sequences, suggesting that earthquake triggering primarily occurs on critically stressed faults. Delineated major fault zones are relatively thick compared to estimated earthquake location uncertainties, and a large number of kilometer-long faults and diffuse seismicity were activated during the sequence. These properties might be related to fault age, roughness, and the complexity of inherited structures. The rich details resolvable in this catalog will facilitate continued investigation of this energetic and well-recorded earthquake sequence. 
    more » « less
  5. Abstract Underground storage in geologic formations will play a key role in the energy transition by providing low‐cost storage of renewable fuels such as hydrogen. The sealing qualities of caverns leached in salt and availability of domal salt bodies make them ideal for energy storage. However, unstable boundary shear zones of anomalous friable salt can enhance internal shearing and pose a structural hazard to storage operations. Considering the indistinct nature of internal salt heterogeneities when imaged with conventional techniques such as reflection seismic surveys, we develop a method to map shear zones using seismicity patterns in the US Gulf Coast, the region with the world's largest underground crude oil emergency supply. We developed and finetuned a machine learning algorithm using tectonic and local microearthquakes. The finetuned model was applied to detect microearthquakes in a 12‐month long nodal seismic dataset from the Sorrento salt dome. Clustered microearthquake locations reveal the three‐dimensional geometry of two anomalous salt shear zones and their orientations were determined using probabilistic hypocenter imaging. The seismicity pattern, combined with borehole pressure measurements, and cavern sonar surveys, shows the spatiotemporal evolution of cavern shapes within the salt dome. We describe how shear zone seismicity contributed to a cavern well failure and gas release incident that occurred during monitoring. Our findings show that caverns placed close to shear zones are more susceptible to structural damage. We propose a non‐invasive technique for mapping hazards related to internal salt dome deformation that can be employed in high‐noise industrial settings to characterize storage facilities. 
    more » « less