On integral models of Shimura varieties
We show how to characterize integral models of Shimura varieties over places of the reflex field where the level subgroup is parahoric by formulating a definition of a ``canonical" integral model. We then prove that, in Hodge type cases and under a tameness hypothesis, the integral models constructed by the author and Kisin in previous work are canonical and, in particular, independent of choices. A main tool is a theory of displays with parahoric structure that we develop in this paper.
more »
« less
- Award ID(s):
- 2100743
- PAR ID:
- 10323715
- Date Published:
- Journal Name:
- Mathematische Annalen
- ISSN:
- 0025-5831
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This article proves, in the case of split groups over arbitrary fields, that all fibers of convolution morphisms attached to parahoric affine flag varieties are paved by products of affine lines and affine lines minus a point. This applies in particular to the affine Grassmannian and to the convolution morphisms in the context of the geometric Satake correspondence. The second part of the article extends these results over $$\mathbb Z$$. Those in turn relate to the recent work of Cass-van den Hove-Scholbach on the geometric Satake equivalence for integral motives, and provide some alternative proofs for some of their results. Comment: 24 pages. Minor error corrected with the addition of Lemma 7.2. Lemma 7.3 added. Material on triviality of morphisms added to section 5. Minor changes in notation. Published versionmore » « less
-
Abstract Let be a simple algebraic group over an algebraically closed field . Let be a finite group acting on . We classify and compute the local types of ‐bundles on a smooth projective ‐curve in terms of the first nonabelian group cohomology of the stabilizer groups at the tamely ramified points with coefficients in . When , we prove that any generically simply connected parahoric Bruhat–Tits group scheme can arise from a ‐bundle. We also prove a local version of this theorem, that is, parahoric group schemes over the formal disc arise from constant group schemes via tamely ramified coverings.more » « less
-
We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure attached to Weil-restricted groups, as defined by B. Levin. Our result covers the (modified) local models attached to all connected reductive groups over $$p$$ -adic local fields with $$p\geqslant 5$$ . In addition, we give a self-contained study of relative affine Grassmannians and loop groups formed using general relative effective Cartier divisors in a relative curve over an arbitrary Noetherian affine scheme.more » « less
-
We give a geometric construction of representations of parahoric subgroups P P of a reductive group G G over a local field which splits over an unramified extension. These representations correspond to characters θ \theta of unramified maximal tori and, when the torus is elliptic, are expected to give rise to supercuspidal representations of G G . We calculate the character of these P P -representations on a special class of regular semisimple elements of G G . Under a certain regularity condition on θ \theta , we prove that the associated P P -representations are irreducible. This generalizes a construction of Lusztig from the hyperspecial case to the setting of an arbitrary parahoric.more » « less
An official website of the United States government

