skip to main content


Title: Decarbonylative sulfide synthesis from carboxylic acids and thioesters via cross-over C–S activation and acyl capture
A method for the synthesis of sulfides from carboxylic acids via thioester C–S activation and acyl capture has been developed, wherein thioesters serve as dual electrophilic activators of carboxylic acids and S-nucleophiles through the merger of decarbonylative palladium catalysis and sulfur coupling. This new concept employs readily available carboxylic acids as coupling partners to directly intercept sulfur reagents via redox-neutral thioester-enabled cross-over thioetherification. The scope of this platform is demonstrated in the highly selective decarbonylative thioetherification of a variety of carboxylic acids and thioesters, including late-stage derivatization of pharmaceuticals and natural products. This method operates under mild, external base-free, and operationally practical conditions, providing a powerful new framework to unlock aryl electrophiles from carboxylic acids and increase the reactivity by employing common building blocks in organic synthesis.  more » « less
Award ID(s):
1650766
NSF-PAR ID:
10323749
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Organic Chemistry Frontiers
Volume:
8
Issue:
17
ISSN:
2052-4129
Page Range / eLocation ID:
4805 to 4813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A general, highly selective method for decarbonylative thioetherification of aryl thioesters by C–S cleavage is reported. These reactions are promoted by a commercially-available, userfriendly, inexpensive, air- and moisture-stable nickel precatalyst. The process occurs with broad functional group tolerance, including free anilines, cyanides, ketones, halides and aryl esters, to efficiently generate thioethers using ubiquitous carboxylic acids as ultimate cross-coupling precursors (cf. conventional aryl halides or pseudohalides). Selectivity studies and site-selective orthogonal cross-coupling/thioetherification are described. This thioester activation/coupling has been highlighted in the expedient synthesis of biorelevant drug analogues. In light of the synthetic utility of thioethers and Ni(II) precatalysts, we anticipate that this user-friendly method will be of broad interest. 
    more » « less
  2. Abstract

    Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C‐O/C‐H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late‐stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper–aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.

     
    more » « less
  3. Abstract

    Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C‐O/C‐H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late‐stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper–aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.

     
    more » « less
  4. null (Ed.)
    We report a general and practical palladium-catalyzed intramolecular decarbonylative coupling of thioesters via C–S bond cleavage, decarbonylation and C–S bond reformation. This robust approach shows excellent functional group tolerance and broad substrate scope using a commercially available, cheap, and practical Pd(OAc) 2 catalyst and phosphine ligands. This strategy operates under base-free conditions. The catalytic system represents the simplest method for intramolecular decarbonylation of thioesters by palladium catalysis reported to date. This versatile protocol is readily performed on a gram scale and applied in late-stage drug derivatization. 
    more » « less
  5. The Sonogashira cross-coupling is one of the most fundamental C–C bond-forming reactions, wherein the strategic value of an alkyne moiety has found widespread applications at the frontiers of organic chemistry, materials science and drug discovery as the cornerstone building block of chemical synthesis. Although traditional variants of Sonogashira cross-coupling involve aryl halides and pseudohalides as electrophiles, recently, tremendous advances have been made in the unconventional disconnection exploiting common carboxylic acids by a decarbonylation/transmetalation pathway. This manifold (1) permits one to take advantage of carboxylic acids as a ubiquitous class of substrates in organic synthesis that are derived from an orthogonal pool of precursors to aryl halides and pseudohalides and (2) combines the benefits of the palladium-catalyzed C(sp 2 )–C(sp) coupling of terminal alkynes with the inherent presence of the carboxylic acid moiety in pharmaceuticals, natural products and organic materials. In this highlight article, we summarize the recent progress in the decarbonylative Sonogashira cross-coupling of carboxylic acid electrophiles to produce arylalkynes and conjugated enynes as a novel avenue for chemical synthesis, whereby a large number of chemical reactions critically rely on transformations of alkynes. 
    more » « less