skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunneling dynamics in cosmological bounce models
Abstract Quasiclassical methods are used to define dynamical tunneling times in models of quantum cosmological bounces. These methods provide relevant new information compared with the traditional treatment of quantum tunneling by means of tunneling probabilities. As shown here, the quantum dynamics in bounce models is not secure from reaching zero scale factor, re-opening the question of how the classical singularity may be avoided. Moreover, in the examples studied here, tunneling times remain small even for large barriers, highlighting the quantum instability of underlying bounce models.  more » « less
Award ID(s):
1912168
PAR ID:
10323852
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2021
Issue:
11
ISSN:
1475-7516
Page Range / eLocation ID:
037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. In all these models, the big bang singularity is replaced by a quantum bounce, and the evolution of the Universe, both before and after the bounce, is universal and weakly dependent on the inflationary potentials, as long as the evolution is dominated by the kinetic energy of the inflaton at the bounce. In particular, the pre-bounce evolution can be universally divided into three different phases: pre-bouncing, pre-transition, and pre-de Sitter. The pre-bouncing phase occurs immediately before the quantum bounce, during which the evolution of the Universe is dominated by the kinetic energy of the inflaton. Thus, the equation of state of the inflaton is about one, w(ϕ)≃1. Soon, the inflation potential takes over, so w(ϕ) rapidly falls from one to negative one. This pre-transition phase is very short and quickly turns into the pre-de Sitter phase, whereby the effective cosmological constant of Planck size takes over and dominates the rest of the contracting phase. Throughout the entire pre-bounce regime, the evolution of both the expansion factor and the inflaton can be approximated by universal analytical solutions, independent of the specific inflation potentials. 
    more » « less
  2. Abstract Quasiclassical methods for non-adiabatic quantum dynamics can reveal new features of quantum effects, such as tunneling evolution, that are harder to analyze in standard treatments based on wave functions of stationary states. Here, these methods are applied to an oscillating universe model introduced recently. Our quasiclassical treatment correctly describes several expected features of tunneling states, in particular just before and after tunneling into a trapped region where a model universe may oscillate through many cycles of collapse and expansion. As a new result, the oscillating dynamics is found to be much less regular than in the classical description, revealing a succession of cycles with varying maximal volume even when the matter ingredients and their parameters do not change. 
    more » « less
  3. Abstract In loop quantum cosmology (LQC) the big bang singularity is generically resolved by a big bounce. This feature holds even when modified quantization prescriptions of the Hamiltonian constraint are used such as in mLQC-I and mLQC-II. While the later describes an effective description qualitatively similar to that of standard LQC, the former describes an asymmetric evolution with an emergent Planckian de-Sitter pre-bounce phase even in the absence of a potential. We consider the potential relation of these canonically quantized non-singular models with effective actions based on a geometric description. We find a 3-parameter family of metric-affinef(ℛ) theories which accurately approximate the effective dynamics of LQC and mLQC-II in all regimes and mLQC-I in the post-bounce phase. Two of the parameters are fixed by enforcing equivalence at the bounce, and the background evolution of the relevant observables can be fitted with only one free parameter. It is seen that the non-perturbative effects of these loop cosmologies are universally encoded by a logarithmic correction that only depends on the bounce curvature of the model. In addition, we find that the best fit value of the free parameter can be very approximately written in terms of fundamental parameters of the underlying quantum description for the three models. The values of the best fits can be written in terms of the bounce density in a simple manner, and the values for each model are related to one another by a proportionality relation involving only the Barbero-Immirzi parameter. 
    more » « less
  4. ABSTRACT The future detection of gravitational waves (GWs) from a Galactic core-collapse supernova will provide information on the physics inside protoneutron stars (PNS). In this work, we apply three different classification methods for the PNS non-radial oscillation modes: Cowling classification, Generalized Cowling Nomenclature (GCN), and a classification based on modal properties (CBMP). Using PNS models from 3D simulations of core-collapse supernovae, we find that in the early stages of the PNS evolution, typically 0.4 s after the bounce, the Cowling classification is inconsistent, but the GCN and the CBMP provide complementary information that helps to understand the evolution of the modes. In the GCN, we note several avoided crossings as the mode frequencies evolve at early times, while the CBMP tracks the modes across the avoided crossings. We verify that the strongest emission of GWs by the PNS corresponds to the f mode in the GCN, indicating that the mode trapping region alternates between the core and the envelope at each avoided crossing. At later times, approximately 0.4 s after the bounce, the three classification methods present a similar description of the mode spectrum. We use our results to test universal relations for the PNS modes according to their classification and find that the behaviour of the universal relations for f and p modes is remarkably simple in the CBMP. 
    more » « less
  5. Q-balls are bound-state configurations of complex scalars stabilized by a conserved Noether charge Q. They are solutions to a second-order differential equation that is structurally identical to Euclidean vacuum-decay bounce solutions in three dimensions. This enables us to translate the recent tunneling potential approach to Q-balls, which amounts to a reformulation of the problem that can simplify the task of finding approximate and even exact Q-ball solutions. 
    more » « less