A recent quasiclassical description of a tunneling universe model is shown to exhibit chaotic dynamics by an analysis of fractal dimensions in the plane of initial values. This result relies on non-adiabatic features of the quantum dynamics, captured by new quasiclassical methods. Chaotic dynamics in the early universe, described by such models, implies that a larger set of initial values of an expanding branch can be probed.
more »
« less
Tunneling dynamics of an oscillating universe model
Abstract Quasiclassical methods for non-adiabatic quantum dynamics can reveal new features of quantum effects, such as tunneling evolution, that are harder to analyze in standard treatments based on wave functions of stationary states. Here, these methods are applied to an oscillating universe model introduced recently. Our quasiclassical treatment correctly describes several expected features of tunneling states, in particular just before and after tunneling into a trapped region where a model universe may oscillate through many cycles of collapse and expansion. As a new result, the oscillating dynamics is found to be much less regular than in the classical description, revealing a succession of cycles with varying maximal volume even when the matter ingredients and their parameters do not change.
more »
« less
- Award ID(s):
- 2206591
- PAR ID:
- 10407288
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2022
- Issue:
- 05
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quasiclassical methods are used to define dynamical tunneling times in models of quantum cosmological bounces. These methods provide relevant new information compared with the traditional treatment of quantum tunneling by means of tunneling probabilities. As shown here, the quantum dynamics in bounce models is not secure from reaching zero scale factor, re-opening the question of how the classical singularity may be avoided. Moreover, in the examples studied here, tunneling times remain small even for large barriers, highlighting the quantum instability of underlying bounce models.more » « less
-
Abstract Canonical methods of quasiclassical dynamics make it possible to go beyond a strict background approximation for cosmological perturbations by including independent fields such as correlation degrees of freedom. New models are introduced and analyzed here for cosmological dynamics in the presence of quantum correlations between background and perturbations, as well as cross-correlations between different modes of a quantum field. Evolution equations for moments of a perturbation state reveal conditions required for inhomogeneity to build up out of an initial vacuum. A crucial role is played by quantum non-locality, formulated by canonical methods as an equivalent local theory with non-classical degrees of freedom given by moments of a quantum state.more » « less
-
Abstract In light of the recent swampland conjectures, we explore quantum cosmology and eternal inflation beyond the slow roll regime. We consider a model of a closed universe with a scalar field ϕ in the framework of tunneling approach to quantum cosmology. The scalar field potential is assumed to have a maximum at ϕ = 0 and can be approximated in its vicinity as V ( ϕ )≈ 3 H 2 - 1/2 m 2 ϕ 2 . Using the instanton method, we find that for m < 2 H the dominant nucleation channel for the universe is tunneling to a homogeneous, spherical de Sitter space. For larger values of m / H , the most probable tunneling is to an inhomogeneous closed universe with a domain wall wrapped around its equator. We determine the quantum state of the field ϕ in the nucleated universe by solving the Wheeler-DeWitt equation with tunneling boundary conditions. Our results agree with earlier work which assumed a slow-roll regime m ≪ H . We finally show that spherical universes nucleating with m < 2 H undergo stochastic eternal inflation with inflating regions forming a fractal of dimension d > 2. For larger values of m the field ϕ is unstable with respect to formation of domain walls and cannot be described by a perturbative stochastic approach.more » « less
-
Accurate quantum dynamics simulations of nonadiabatic processes are important for studies of electron transfer, energy transfer, and photochemical reactions in complex systems. In this comparative study, we benchmark various approximate nonadiabatic dynamics methods with mapping variables against numerically exact calculations based on the tensor-train (TT) representation of high-dimensional arrays, including TT-KSL for zero-temperature dynamics and TT-thermofield dynamics for finite-temperature dynamics. The approximate nonadiabatic dynamics methods investigated include mixed quantum–classical Ehrenfest mean-field and fewest-switches surface hopping, linearized semiclassical mapping dynamics, symmetrized quasiclassical dynamics, the spin-mapping method, and extended classical mapping models. Different model systems were evaluated, including the spin-boson model for nonadiabatic dynamics in the condensed phase, the linear vibronic coupling model for electronic transition through conical intersections, the photoisomerization model of retinal, and Tully’s one-dimensional scattering models. Our calculations show that the optimal choice of approximate dynamical method is system-specific, and the accuracy is sensitively dependent on the zero-point-energy parameter and the initial sampling strategy for the mapping variables.more » « less
An official website of the United States government

