skip to main content


Title: An Evaluation of Phylogenetic Workflows in Viral Molecular Epidemiology
The use of viral sequence data to inform public health intervention has become increasingly common in the realm of epidemiology. Such methods typically utilize multiple sequence alignments and phylogenies estimated from the sequence data. Like all estimation techniques, they are error prone, yet the impacts of such imperfections on downstream epidemiological inferences are poorly understood. To address this, we executed multiple commonly used viral phylogenetic analysis workflows on simulated viral sequence data, modeling Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), and Ebolavirus, and we computed multiple methods of accuracy, motivated by transmission-clustering techniques. For multiple sequence alignment, MAFFT consistently outperformed MUSCLE and Clustal Omega, in both accuracy and runtime. For phylogenetic inference, FastTree 2, IQ-TREE, RAxML-NG, and PhyML had similar topological accuracies, but branch lengths and pairwise distances were consistently most accurate in phylogenies inferred by RAxML-NG. However, FastTree 2 was the fastest, by orders of magnitude, and when the other tools were used to optimize branch lengths along a fixed FastTree 2 topology, the resulting phylogenies had accuracies that were indistinguishable from their original counterparts, but with a fraction of the runtime.  more » « less
Award ID(s):
2028040
NSF-PAR ID:
10323858
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Viruses
Volume:
14
Issue:
4
ISSN:
1999-4915
Page Range / eLocation ID:
774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move from sequence data to a clear understanding of evolutionary history, in part due to the computational challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference by integrating smaller subtrees in a computationally efficient manner. Here, we combined information from sequence capture and whole-genome phylogenies using supertree methods. However, the available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic) megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with support values, that included 707 bird species (~7% of avian species diversity). We estimated branch lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used will permit the continued addition of taxa to this supertree as new phylogenomic data are published, and it could be applied to other taxa as well. 
    more » « less
  2. Abstract

    Ancestral sequence reconstruction (ASR) is a powerful tool to study the evolution of proteins and thus gain deep insight into the relationships among protein sequence, structure, and function. A major barrier to its broad use is the complexity of the task: it requires multiple software packages, complex file manipulations, and expert phylogenetic knowledge. Here we introducetopiary, a software pipeline that aims to overcome this barrier. To use topiary, users prepare a spreadsheet with a handful of sequences. Topiary then: (1) Infers the taxonomic scope for the ASR study and finds relevant sequences by BLAST; (2) Does taxonomically informed sequence quality control and redundancy reduction; (3) Constructs a multiple sequence alignment; (4) Generates a maximum‐likelihood gene tree; (5) Reconciles the gene tree to the species tree; (6) Reconstructs ancestral amino acid sequences; and (7) Determines branch supports. The pipeline returns annotated evolutionary trees, spreadsheets with sequences, and graphical summaries of ancestor quality. This is achieved by integrating modern phylogenetics software (Muscle5, RAxML‐NG, GeneRax, and PastML) with online databases (NCBI and the Open Tree of Life). In this paper, we introduce non‐expert readers to the steps required for ASR, describe the specific design choices made intopiary, provide a detailed protocol for users, and then validate the pipeline using datasets from a broad collection of protein families. Topiary is freely available for download:https://github.com/harmslab/topiary.

     
    more » « less
  3. Abstract Summary

    Phylogenetic placement is the problem of placing ‘query’ sequences into an existing tree (called a ‘backbone tree’). One of the most accurate phylogenetic placement methods to date is the maximum likelihood-based method pplacer, using RAxML to estimate numeric parameters on the backbone tree and then adding the given query sequence to the edge that maximizes the probability that the resulting tree generates the query sequence. Unfortunately, this way of running pplacer fails to return valid outputs on many moderately large backbone trees and so is limited to backbone trees with at most ∼10 000 leaves. SCAMPP is a technique to enable pplacer to run on larger backbone trees, which operates by finding a small ‘placement subtree’ specific to each query sequence, within which the query sequence are placed using pplacer. That approach matched the scalability and accuracy of APPLES-2, the previous most scalable method. Here, we explore a different aspect of pplacer’s strategy: the technique used to estimate numeric parameters on the backbone tree. We confirm anecdotal evidence that using FastTree instead of RAxML to estimate numeric parameters on the backbone tree enables pplacer to scale to much larger backbone trees, almost (but not quite) matching the scalability of APPLES-2 and pplacer-SCAMPP. We then evaluate the combination of these two techniques—SCAMPP and the use of FastTree. We show that this combined approach, pplacer-SCAMPP-FastTree, has the same scalability as APPLES-2, improves on the scalability of pplacer-FastTree and achieves better accuracy than the comparably scalable methods.

    Availability and implementation

    https://github.com/gillichu/PLUSplacer-taxtastic.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less
  4. Xia, Xuhua (Ed.)
    Abstract Phylogenetic trees inferred from sequence data often have branch lengths measured in the expected number of substitutions and therefore, do not have divergence times estimated. These trees give an incomplete view of evolutionary histories since many applications of phylogenies require time trees. Many methods have been developed to convert the inferred branch lengths from substitution unit to time unit using calibration points, but none is universally accepted as they are challenged in both scalability and accuracy under complex models. Here, we introduce a new method that formulates dating as a non-convex optimization problem where the variance of log-transformed rate multipliers are minimized across the tree. On simulated and real data, we show that our method, wLogDate, is often more accurate than alternatives and is more robust to various model assumptions. 
    more » « less
  5. Abstract

    Analysis of phylogenetic trees has become an essential tool in epidemiology. Likelihood-based methods fit models to phylogenies to draw inferences about the phylodynamics and history of viral transmission. However, these methods are often computationally expensive, which limits the complexity and realism of phylodynamic models and makes them ill-suited for informing policy decisions in real-time during rapidly developing outbreaks. Likelihood-free methods using deep learning are pushing the boundaries of inference beyond these constraints. In this paper, we extend, compare, and contrast a recently developed deep learning method for likelihood-free inference from trees. We trained multiple deep neural networks using phylogenies from simulated outbreaks that spread among 5 locations and found they achieve close to the same levels of accuracy as Bayesian inference under the true simulation model. We compared robustness to model misspecification of a trained neural network to that of a Bayesian method. We found that both models had comparable performance, converging on similar biases. We also implemented a method of uncertainty quantification called conformalized quantile regression that we demonstrate has similar patterns of sensitivity to model misspecification as Bayesian highest posterior density (HPD) and greatly overlap with HPDs, but have lower precision (more conservative). Finally, we trained and tested a neural network against phylogeographic data from a recent study of the SARS-Cov-2 pandemic in Europe and obtained similar estimates of region-specific epidemiological parameters and the location of the common ancestor in Europe. Along with being as accurate and robust as likelihood-based methods, our trained neural networks are on average over 3 orders of magnitude faster after training. Our results support the notion that neural networks can be trained with simulated data to accurately mimic the good and bad statistical properties of the likelihood functions of generative phylogenetic models.

     
    more » « less