skip to main content


Title: What we can learn in the kitchen sink: an example from garnet granulite
Interpretation of geochronological and petrological data from partially-melted granulite is challenging. However, integration of multiple chronometers and mineral assemblage diagrams (MAD) can be used to estimate the nature and duration of processes. Excellent lower-crustal exposures of garnet granulite from the Malaspina Pluton, Fiordland New Zealand provide an ideal place to employ this kitchen sink approach. We use zircon U-Pb ages from LA-ICPMS, SHRIMP-RG, and CA-TIMS, garnet Lu-Hf and Sm-Nd ages, and MAD in order to evaluate local partial melting vs. melt injection, equilibrium volumes, P-T conditions, and the duration of lower crustal thermal events. Host diorite (H), garnet-clinopyroxene reaction zones (GRZ), coarse garnet selvages, and tonalite veins provide a record of intrusion and granulite facies partial melting. Zircon U-Pb ages range from 123 to 107 Ma (all); LA-ICPMS ages contain the entire range; CA-TIMS ages range from 118.30±0.13 to 115.7±0.18 Ma; and SHRIMP-RG ages range from 121.4±2 to 109.8±1.8 Ma. The latter two techniques are interpreted to indicate primary igneous crystallization from ~119 to ~116 Ma and the youngest ~110 Ma ages are interpreted as metamorphic zircon growth. Garnet ages for ~1 cm grains are ~113 Ma (Lu-Hf & Sm-Nd) and record metamorphic growth, and <0.3 mm grains with Sm-Nd ages from 113 to 104 Ma reflect high temperature intracrystalline diffusion and isotopic closure during cooling to amphibolite facies. Zircon trace-element compositions indicate 2 distinct crystallization trends reflecting evolution of primary magma batches. MAD indicate that garnet was not in equilibrium with sampled rock compositions. Instead, garnet shows apparent equilibrium with a modeled mixture of the GRZ and the H and grew in equilibrium with an effective bulk composition that shifted toward the leucosome. This would produce the observed increase in garnet grossular content. We conclude that: Malaspina rocks from Crooked Arm preserve evidence for 2 igneous layers which evolved as discrete magmas, igneous crystallization lasted 2 to 3 m.y., granulite metamorphism peaked ~ 3 m.y. after intrusion, metamorphism lasted ≥3 m.y., cooling occurred at ~20°C/m.y., and granulite minerals equilibrated with a mixture of solid phases and melt at ~14 kbar and 920°C (based on garnet compositions and MAD).  more » « less
Award ID(s):
1650183
NSF-PAR ID:
10323906
Author(s) / Creator(s):
Date Published:
Journal Name:
America Geophysical Union
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zircon U-Pb, and garnet Sm-Nd and Lu-Hf dates provide important constraints on local and orogenic scale processes in lower-crustal rocks. However, in high-temperature metamorphic rocks these isotopic systems typically yield significant ranges reflecting both igneous and metamorphic processes. Therefore, linking dates to specific aspects of rock history can be problematic. In Fiordland, New Zealand, granulite-facies orthogneiss is cut by leucosomes that are bordered by garnet clinopyroxene reaction zones (garnet reaction zones). In both host orthogneiss and garnet reaction zones, zircon are typically anhedral with U-Pb dates ranging from 118.30 ± 0.13 to 115.70 ± 0.18 Ma (CA-ID-TIMS) and 121.4 ± 2.0 to 109.8 ± 1.8 Ma (SHRIMP-RG). Zircon dates in host and garnet reaction zone do not define distinct populations. In addition, the dates cannot be readily grouped based on external morphology or internal CL zoning. Zircon trace-element concentrations indicate two distinct crystallization trends, clearly seen in Th and U. Garnet occurs in selvages to the leucosome veins and in the adjacent garnet reaction zones. In selvages and host orthogneiss, garnet is generally 0.5 to 1 cm diameter and euhedral and is 0.1 to 0.5 cm diameter and subhedral in garnet reaction zones. Garnet Sm-Nd and Lu-Hf dates range from ca. 115 to 101 Ma (including uncertainties) and correlate with grain size. We interpret the CA-ID-TIMS zircon dates to record the age of magma emplacement and the SHRIMP-RG dates to record a range from igneous crystallization to metamorphic dissolution and reprecipitation and/or local Pb loss. Zircon compositional trends within the garnet reaction zone and host are compatible with locally isolated melt and/or separate intrusive magma batches for the two samples described here. Dates for the largest, ~1 cm, garnet of ~113 Ma record growth during metamorphism, while the smaller grains with younger dates reflect high-temperature intracrystalline diffusion and isotopic closure during cooling. The comprehensive geochronological data set for a single location in the Malaspina Pluton illustrates a complex and protracted geologic history common in granulite facies rocks, estimates lower crustal cooling rates of ~20 °C/m.y., and underlines the importance of multiple chronometers and careful textural characterization for assigning meaningful ages to lower-crustal rocks. Numerous data sets from single locations, like the one described here, are needed to evaluate the spatial extent and variation of cooling rates for Fiordland and other lower crustal exposures. 
    more » « less
  2. Garnet ages for eclogite and granulite from the Western Fiordland Orthogneiss (WFO) provide a precise age for high-grade metamorphism and partial melting of the lower crust in a Cretaceous magmatic arc currently exposed in Fiordland, New Zealand. U/Pb zircon ages and pluton areas indicate that a high magmatic flux event between 118 and 115 Ma added >3,000 km2 of mid- to lower-crustal plutons. The high flux event was followed by high temperature metamorphism and partial melting which resulted in pervasive leucosomes, and trondhjemite layers and veins. At least 1,800 km2 of the newly added crust was metamorphosed to garnet granulite facies orthogneiss. Thermobarometry and phase diagram models indicate that garnet grew at 850 to 1,000°C and 12 to 14 kbar in this monzodiorite and diorite gneiss of the Misty, Malaspina, and Breaksea plutons. Sm-Nd garnet-rock isochrons for these three plutons of the WFO (>700 km2of lower crust) indicate that peak temperatures were reached at 111.7±1.0 Ma (N=16). The isotopic and chemical composition of zircon indicate that the Cretaceous arc flare-up was most likely triggered by partial melting and hybridization of subducted oceanic crust and enriched subcontinental lithospheric mantle directly prior to cessation of arc magmatism. The driving mechanism for the terminal magmatic surge is inferred to be propagation of a discontinuous slab tear beneath the arc, or a ridge-trench collision event between 136 and 128 Ma. The lack of ca. 112 Ma plutons in the western part of Fiordland negates a magmatic heat source for garnet granulite metamorphism. Therefore, we infer that high heat flow associated with mantle advection at the base of the arc after the magmatic surge continued for several m.y., heating the lower crust to granulite facies temperatures 
    more » « less
  3. We present >90 new igneous and metamorphic zircon and titanite petrochronology ages from the eastern Transverse Ranges of the Southern California Batholith (SCB) to investigate magmatic and tectonic processes in the frontal arc during postulated initiation of Late Cretaceous shallow-slab subduction. Our data cover >4000 km2 in the eastern Transverse Ranges and include data from Mesozoic plutons in the Mt. Pinos, Alamo Mountain, San Gabriel Mountain blocks, and the Eastern Peninsular mylonite zone. Igneous zircon data reveal 4 discrete pulses of magmatism at 258-220 Ma, 160-142 Ma, 120-118 Ma, and 90-66 Ma. The latter pulse involved a widespread magmatic surge in the SCB and coincided with garnet-granulite to upper amphibolite-facies metamorphism and partial melting in the lower crust (Cucamonga terrane, eastern San Gabriel Mountains). In this region, metamorphic zircons in gneisses, migmatites and calc-silicates record high-temperature metamorphism from 91 to 74 Ma at 9–7 kbars and 800–730°C. The Late Cretaceous arc flare-up was temporally and spatially associated with the development of a regionally extensive oblique sinistral-reverse shear system that includes from north to south (present-day) the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. Syn-kinematic, metamorphic titanite ages in the Tumamait shear zone range from 77–74 Ma at 720–700°C, titanites in the Black Belt mylonite zone give an age of 83 Ma, and those in the eastern Peninsular Ranges mylonite zone give ages of 89–86 Ma at 680–670°C. These data suggest a progressive northward younging of ductile shearing at amphibolite- to upper-amphibolite-facies conditions from 88 to 74 Ma, which overlaps with the timing of the Late Cretaceous arc flare-up event. Collectively, these data indicate that arc magmatism, high-temperature metamorphism, and intra-arc contraction were active in the SCB throughout the Late Cretaceous. These observations appear to contradict existing models for the termination of magmatism and refrigeration of the arc due to underthrusting of the conjugate Shatsky rise starting at ca. 88 Ma. We suggest that shallow-slab subduction likely postdates ca. 74 Ma when high-temperature metamorphism ceased in the SCB. 
    more » « less
  4. Abstract

    Dating ultra‐high–pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e. deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here, we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction–collision–exhumation processes, based on eclogites from the Dabie–Sulu orogenic belt in eastern China, one of the largestUHPterranes on Earth. In this study, we integrate garnet Lu–Hf and Sm–Nd ages with zircon and titanite U–Pb ages for three eclogite samples from the SuluUHPterrane. We combine this age information with Zr‐in‐rutile temperature estimates, and relate these multiple chronometers to differentP–Tconditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures ofUHPconditions and a hotter stage, subsequent to the peak pressure (‘hot exhumation') respectively. Garnet Lu–Hf ages (c. 238–235 Ma) record the initial prograde growth of garnet, while coupled Sm–Nd ages (c. 219–213 Ma) reflect cooling following hot exhumation. The maximum duration ofUHPconditions is constrained by the age difference of these two systems in garnet (c. 235–220 Ma). Complementary zircon and titanite U–Pb ages ofc. 235–230 Ma andc. 216–206 Ma provide further constraints on the timing of prograde metamorphism and the ‘cold exhumation' respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie–Sulu orogeny. Three sub‐blocks are thus defined by progressively younger garnet ages: western Dabie (243–238 Ma), eastern Dabie–northern Sulu (238–235 Ma) and southern Sulu terranes (225–220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a largeUHPterrane can possibly be extended to other suture zones.

     
    more » « less
  5. Abstract

    High‐precision dating of the metamorphic sole of ophiolites can provide insight into the tectonic evolution of ophiolites and subduction zone processes. To understand subduction initiation beneath a young, well‐preserved and well‐characterized ophiolite, we performed coupled zircon laser‐ablation inductively coupled mass spectrometry trace element analyses and high‐precision isotope dilution‐thermal ionization mass spectrometry U–Pb dating on 25 samples from the metamorphic sole of the Samail ophiolite (Oman‐United Arab Emirates). Zircon grains from amphibolite‐ to granulite‐facies (0.8–1.3 GPa, ~700–900°C), garnet‐ and clinopyroxene‐bearing amphibolite samples (n = 18) show systematic trends of decreasing heavy rare earth element slope (HREE; Yb/Dy) with decreasing Yb concentration, reflecting progressive depletion of the HREE during prograde garnet growth. For half of the garnet‐clinopyroxene amphibolite samples, Ti‐in‐zircon temperatures increase, and U–Pb dates young with decreasing HREE slope, consistent with coupled zircon and garnet growth during prograde metamorphism. In the remaining samples, there is no apparent variation in Ti‐in‐zircon temperature with decreasing HREE slope, and the combined U–Pb and geochemical data suggest zircon crystallization along either the prograde to peak or prograde to initial retrograde portions of the metamorphicP–T–tpath. The new data bracket the timing of prograde garnet and zircon growth in the highest grade rocks of the metamorphic sole between 96.698 ± 0.094 and 95.161 ± 0.064 Ma, in contrast with previously published geochronology suggesting prograde metamorphism at ~104 Ma. Garnet‐free amphibolites and leucocratic pods from lower grade (but still upper amphibolite facies) portions of the sole are uniformly HREE enriched (Yb/Dy > 5) and are ~0.5–1.3 Myr younger than the higher grade rocks from the same localities, constraining the temporal offset between the metamorphism and juxtaposition of the higher and lower grade units. Positive zircon εHf(+6.5 to +14.6) for all but one of the dated amphibolites are consistent with an oceanic basalt protolith for the sole. Our new data indicate that prograde sole metamorphism (96.7–95.2 Ma) immediately predated and overlapped growth of the overlying ophiolite crust (96.1–95.2 Ma). The ~600 ky offset between the onset of sole metamorphism in the northern portion of the ophiolite versus the start of ophiolite magmatism is an order of magnitude shorter than previously proposed (~8 Ma) and is consistent with either spontaneous subduction initiation or an abbreviated period of initial thrusting during induced subduction initiation. Taken together, the sole and ophiolite crust preserve a record of the first ~1.5 Myr of subduction. A gradient in the initiation of high‐grade metamorphism from the northwest (96.7 Ma) to southeast (96.0–95.7 Ma) may record propagation of the nascent subduction zone and/or variations in subduction rate along the length of the ophiolite.

     
    more » « less