skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7
Abstract We present observations of ≳10–100 keV nucleon −1 suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track the magnetic field polarity reversal and show up to ∼10:1 anti-sunward, field-aligned flows and beams closer to the HCS that become nearly isotropic farther from the HCS; (4) the He spectrum steepens either side of the HCS, and the He, O, and Fe spectra exhibit power laws of the form ∼ E −4 – E 6 ; and (5) maximum energies E X increase with the ion’s charge-to-mass ( Q / M ) ratio as E X / E H ∝ ( Q X / M X ) δ , where δ ∼ 0.65–0.76, assuming that the average Q states are similar to those measured in gradual and impulsive solar energetic particle events at 1 au. The absence of velocity dispersion in combination with strong field-aligned anisotropies closer to the HCS appears to rule out solar flares and near-Sun coronal-mass-ejection-driven shocks. These new observations present challenges not only for mechanisms that employ direct parallel electric fields and organize maximum energies according to E / Q but also for local diffusive and magnetic-reconnection-driven acceleration models. Reevaluation of our current understanding of the production and transport of energetic ions is necessary to understand this near-solar, current-sheet-associated population of ST ions.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS⊙IS’s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are streaming outward from the Sun. We do not see a shock in the in situ plasma or magnetic field data throughout the event. Heavy ions, such as O and Fe, were detected in addition to protons and 4He, but without significant enhancements in 3He or energetic electrons. Our analysis shows that this event is associated with a slow streamer blowout coronal mass ejection (SBO-CME), and the signatures of this small CME event are consistent with those typical of larger CME events. The time–intensity profile of this event shows that the Parker Solar Probe encountered the western flank of the SBO-CME. The anisotropic and dispersive nature of this event in a shockless local plasma gives indications that these particles are most likely accelerated remotely near the Sun by a weak shock or compression wave ahead of the SBO-CME. This event may represent direct observations of the source of the low-energy SEP seed particle population. 
    more » « less
  2. Abstract

    Wind spacecraft measurements are analyzed to obtain a current sheet (CS) normal widthdcsdistribution of 3374 confirmed magnetic reconnection exhausts in the ecliptic plane of the solar wind at 1 au. Thedcsdistribution displays a nearly exponential decay from a peak atdcs= 25dito a median atdcs= 85diand a 95th percentile atdcs= 905diwith a maximum exhaust width atdcs= 8077di. A magnetic fieldθ-rotation angle distribution increases linearly from a relatively few high-shear events toward a broad peak at 35° <θ< 65°. The azimuthalϕangles of the CS normal directions of 430 thickdcs≥ 500diexhausts are consistent with a dominant Parker-spiral magnetic field and a CS normal along the ortho-Parker direction. The CS normal orientations of 370 kinetic-scaledcs< 25diexhausts are isotropic in contrast, and likely associated with Alfvénic solar wind turbulence. We propose that the alignment of exhaust normal directions from narrowdcs∼ 15–25diwidths to well beyonddcs∼ 500diwith an ortho-Parker azimuthal direction of a large-scale heliospheric current sheet (HCS) is a consequence of CS bifurcation and turbulence within the HCS exhaust that may trigger reconnection of the adjacent pair of bifurcated CSs. The proposed HCS-avalanche scenario suggests that the underlying large-scale parent HCS closer to the Sun evolves with heliocentric distance to fracture into many, more or less aligned, secondary CSs due to reconnection. A few wide exhaust-associated HCS-like CSs could represent a population of HCSs that failed to reconnect as frequently between the Sun and 1 au as other HCSs.

    more » « less
  3. The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R ⊙ , allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP’s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with a spectral index close to –5/3 rather than –3/2), a lower Alfvénicity, and a ‘1∕ f ’ break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ≈4° from the HCS, suggesting ≈8° as the full-width of the streamer belt wind at these distances. While the majority of the Alfvénic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind. 
    more » « less
  4. The exact coronal origin of the slow-speed solar wind has been under debate for decades in the Heliophysics community. Besides the solar wind speed, the heavy ion composition, including the elemental abundances and charge state ratios, are widely used as diagnostic tool to investigate the coronal origins of the slow wind. In this study, we recognize a subset of slow speed solar wind that is located on the upper boundary of the data distribution in the O7+/O6+ versus C6+/C5+ plot (O-C plot). In addition, in this wind the elemental abundances relative to protons, such as N/P, O/P, Ne/P, Mg/P, Si/P, S/P, Fe/P, He/P, and C/P are systemically depleted. We compare these winds (“upper depleted wind” or UDW hereafter) with the slow winds that are located in the main stream of the O-C plot and possess comparable Carbon abundance range as the depletion wind (“normal-depletion-wind”, or NDW hereafter). We find that the proton density in the UDW is about 27.5% lower than in the NDW. Charge state ratios of O7+/O6+, O7+/O, and O8+/O are decreased by 64.4%, 54.5%, and 52.1%, respectively. The occurrence rate of these UDW is anti-correlated with solar cycle. By tracing the wind along PFSS field lines back to the Sun, we find that the coronal origins of the UDW are more likely associated with quiet Sun regions, while the NDW are mainly associated with active regions and HCS-streamer. 
    more » « less
  5. Abstract

    Using numerical simulations, we analyze the time evolution of the pitch-angle distribution of 500 MeV and 1 GeV solar protons, released impulsively near the Sun, at 1 au. The numerical model solves the equations of motion of an ensemble of particles that move in both the average Parker spiral field and a large-scale turbulent interplanetary magnetic field (IMF). Our model also includes the heliospheric current sheet (HCS). The focus of this study is to determine the effect of the large-scale turbulent IMF on the pitch-angle distribution of GV-rigidity protons and its time variations in terms of understanding variations in ground-level enhancement (GLE) events. Our particular interest is to explain the two distinct opposite-directed fluxes of the unusual event on 1989 October 22 (GLE#44). The results show that by adding the large-scale turbulence to the average Parker IMF, the pitch-angle distribution at 1 au depends strongly on the observer’s location relative to the release location of the particles at the Sun. Even a 0.2° displacement in latitude or longitude leads to a significant change in the observed distribution and/or its variation in time. We find that there are some observer locations for which the distinct sunward and antisunward fluxes coexist at certain times of the events. We also find that the HCS has an important effect. For instance, even in locations of poor magnetic connection with the release location at the Sun, but near the HCS, there can be two fluxes moving in different directions at the same time.

    more » « less