skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7
Abstract We present observations of ≳10–100 keV nucleon −1 suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track the magnetic field polarity reversal and show up to ∼10:1 anti-sunward, field-aligned flows and beams closer to the HCS that become nearly isotropic farther from the HCS; (4) the He spectrum steepens either side of the HCS, and the He, O, and Fe spectra exhibit power laws of the form ∼ E −4 – E 6 ; and (5) maximum energies E X increase with the ion’s charge-to-mass ( Q / M ) ratio as E X / E H ∝ ( Q X / M X ) δ , where δ ∼ 0.65–0.76, assuming that the average Q states are similar to those measured in gradual and impulsive solar energetic particle events at 1 au. The absence of velocity dispersion in combination with strong field-aligned anisotropies closer to the HCS appears to rule out solar flares and near-Sun coronal-mass-ejection-driven shocks. These new observations present challenges not only for mechanisms that employ direct parallel electric fields and organize maximum energies according to E / Q but also for local diffusive and magnetic-reconnection-driven acceleration models. Reevaluation of our current understanding of the production and transport of energetic ions is necessary to understand this near-solar, current-sheet-associated population of ST ions.  more » « less
Award ID(s):
2109083
PAR ID:
10323919
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent observations by the Parker Solar Probe (PSP) suggest that protons and heavier ions are accelerated to high energies by magnetic reconnection at the heliospheric current sheet (HCS). By solving the energetic particle transport equation in large-scale MHD simulations, we study the compression acceleration of protons and heavier ions in the reconnecting HCS. We find that the acceleration of multispecies ions results in nonthermal power-law distributions with a spectral index consistent with the PSP observations. Our study shows that the high-energy cutoff of protons can reachEmax0.1–1 MeV depending on the particle diffusion coefficients. We also study how the high-energy cutoff of different ion species scales with the charge-to-mass ratioEmax(Q/M)α. When determining the diffusion coefficients from the quasi-linear theory with a Kolmogorov magnetic power spectrum, we find thatα∼ 0.4, which is somewhat smaller thanα∼ 0.7 observed by PSP.

     
    more » « less
  2. The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R ⊙ , allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP’s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with a spectral index close to –5/3 rather than –3/2), a lower Alfvénicity, and a ‘1∕ f ’ break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ≈4° from the HCS, suggesting ≈8° as the full-width of the streamer belt wind at these distances. While the majority of the Alfvénic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind. 
    more » « less
  3. Abstract

    Wind spacecraft measurements are analyzed to obtain a current sheet (CS) normal widthdcsdistribution of 3374 confirmed magnetic reconnection exhausts in the ecliptic plane of the solar wind at 1 au. Thedcsdistribution displays a nearly exponential decay from a peak atdcs= 25dito a median atdcs= 85diand a 95th percentile atdcs= 905diwith a maximum exhaust width atdcs= 8077di. A magnetic fieldθ-rotation angle distribution increases linearly from a relatively few high-shear events toward a broad peak at 35° <θ< 65°. The azimuthalϕangles of the CS normal directions of 430 thickdcs≥ 500diexhausts are consistent with a dominant Parker-spiral magnetic field and a CS normal along the ortho-Parker direction. The CS normal orientations of 370 kinetic-scaledcs< 25diexhausts are isotropic in contrast, and likely associated with Alfvénic solar wind turbulence. We propose that the alignment of exhaust normal directions from narrowdcs∼ 15–25diwidths to well beyonddcs∼ 500diwith an ortho-Parker azimuthal direction of a large-scale heliospheric current sheet (HCS) is a consequence of CS bifurcation and turbulence within the HCS exhaust that may trigger reconnection of the adjacent pair of bifurcated CSs. The proposed HCS-avalanche scenario suggests that the underlying large-scale parent HCS closer to the Sun evolves with heliocentric distance to fracture into many, more or less aligned, secondary CSs due to reconnection. A few wide exhaust-associated HCS-like CSs could represent a population of HCSs that failed to reconnect as frequently between the Sun and 1 au as other HCSs.

     
    more » « less
  4. null (Ed.)
    During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale heliospheric current sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5–107 solar radii during encounters 1, 4, and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic field lines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent with the reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests that reconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossings of the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solar radii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is much thicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absence of reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which are associated with “switchbacks”. Thus, the PSP findings suggest that large-scale dynamics, either locally in the solar wind or within the coronal source of the HCS (at the tip of helmet streamers), plays a critical role in triggering reconnection onset. 
    more » « less
  5. Abstract

    The current sheet structure and ion behaviors in a magnetotail reconnection diffusion region are investigated. The multispacecraft analysis suggests a corrugated current sheet structure, interpreted as due to a flapping motion that propagates along geocentric solar magnetospheric along the +ydirection in the Geocentric Solar Magnetospheric (GSM) coordinate. The electric field (E) and ion distributions have similarities with those in a planar current sheet. Energetic ions move along the current direction, suggesting the acceleration by the observed reconnectionEduring the meandering motion. Counterstreaming ions along the current sheet normal suggest the acceleration by the HallEthat is observed to be the dominant component. However, at certain locations,Eand counterstreaming ions significantly deviate from the local normal direction, and more than one pair of counterstreaming populations exist, possibly because the corrugated current sheet enables ions entering the current sheet at different locations with different velocities to mix together.

     
    more » « less