The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems. 
                        more » 
                        « less   
                    
                            
                            Anomaly Detection based on Traffic Monitoring for Secure Blockchain Networking
                        
                    
    
            While the blockchain technology provides strong cryptographic protection on the ledger and the system operations, the underlying blockchain networking remains vulnerable due to potential threats such as denial of service (DoS), Eclipse, spoofing, and Sybil attacks. Effectively detecting such malicious events should thus be an essential task for securing blockchain networks and services. Due to its importance, several studies investigated anomaly detection in Bitcoin and blockchain networks, but their analyses mainly focused on the blockchain ledger in the application context (e.g., transactions) and targets specific types of attacks (e.g., double-spending, deanonymization, etc). In this study, we present a security mechanism based on the analysis of blockchain network traffic statistics (rather than ledger data) to detect malicious events, through the functions of data collection and anomaly detection. The data collection engine senses the underlying blockchain traffic and generates multi-dimensional data streams in a periodic manner. The anomaly detection engine then detects anomalies from the created data instances based on semi-supervised learning, which is capable of detecting previously unseen patterns, and we introduce our profiling-based detection engine implemented on top of AutoEncoder (AE). Our experimental results support the effectiveness of the presented security mechanism for accurate, online detection of malicious events from blockchain networking traffic data. We also show further reduction in time complexity (up to 66.8% for training and 85.7% for testing), without any performance degradation using feature prioritization compared to the utilization of the entire features. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1922410
- PAR ID:
- 10324012
- Date Published:
- Journal Name:
- IEEE International Conference on Blockchain and Cryptocurrency (ICBC)
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Recent self-propagating malware (SPM) campaigns compromised hundred of thousands of victim machines on the Internet. It is challenging to detect these attacks in their early stages, as adversaries utilize common network services, use novel techniques, and can evade existing detection mechanisms. We propose PORTFILER (PORT-Level Network Traffic ProFILER), a new machine learning system applied to network traffic for detecting SPM attacks. PORTFILER extracts port-level features from the Zeek connection logs collected at a border of a monitored network, applies anomaly detection techniques to identify suspicious events, and ranks the alerts across ports for investigation by the Security Operations Center (SOC). We propose a novel ensemble methodology for aggregating individual models in PORTFILER that increases resilience against several evasion strategies compared to standard ML baselines. We extensively evaluate PORTFILER on traffic collected from two university networks, and show that it can detect SPM attacks with different patterns, such as WannaCry and Mirai, and performs well under evasion. Ranking across ports achieves precision over 0.94 and false positive rates below 8 × 10−4 in the top 100 highly ranked alerts. When deployed on the university networks, PORTFILER detected anomalous SPM-like activity on one of the campus networks, confirmed by the university SOC as malicious. PORTFILER also detected a Mirai attack recreated on the two university networks with higher precision and recall than deep learning based autoencoder methods.more » « less
- 
            null (Ed.)Collaborative intrusion detection system (CIDS) shares the critical detection-control information across the nodes for improved and coordinated defense. Software-defined network (SDN) introduces the controllers for the networking control, including for the networks spanning across multiple autonomous systems, and therefore provides a prime platform for CIDS application. Although previous research studies have focused on CIDS in SDN, the real-time secure exchange of the detection relevant information (e.g., the detection signature) remains a critical challenge. In particular, the CIDS research still lacks robust trust management of the SDN controllers and the integrity protection of the collaborative defense information to resist against the insider attacks transmitting untruthful and malicious detection signatures to other participating controllers. In this paper, we propose a blockchain-enabled collaborative intrusion detection in SDN, taking advantage of the blockchain’s security properties. Our scheme achieves three important security goals: to establish the trust of the participating controllers by using the permissioned blockchain to register the controller and manage digital certificates, to protect the integrity of the detection signatures against malicious detection signature injection, and to attest the delivery/update of the detection signature to other controllers. Our experiments in CloudLab based on a prototype built on Ethereum, Smart Contract, and IPFS demonstrates that our approach efficiently shares and distributes detection signatures in real-time through the trustworthy distributed platform.more » « less
- 
            null (Ed.)Collaborative intrusion detection system (CIDS) shares the critical detection-control information across the nodes for improved and coordinated defense. Software-defined network (SDN) introduces the controllers for the networking control, including for the networks spanning across multiple autonomous systems, and therefore provides a prime platform for CIDS application. Although previous research studies have focused on CIDS in SDN, the real-time secure exchange of the detection relevant information (e.g., the detection signature) remains a critical challenge. In particular, the CIDS research still lacks robust trust management of the SDN controllers and the integrity protection of the collaborative defense information to resist against the insider attacks transmitting untruthful and malicious detection signatures to other participating controllers. In this paper, we propose a blockchain-enabled collaborative intrusion detection in SDN, taking advantage of the blockchain’s security properties. Our scheme achieves three important security goals: to establish the trust of the participating controllers by using the permissioned blockchain to register the controller and manage digital certificates, to protect the integrity of the detection signatures against malicious detection signature injection, and to attest the delivery/update of the detection signature to other controllers. Our experiments in CloudLab based on a prototype built on Ethereum, Smart Contract, and IPFS demonstrates that our approach efficiently shares and distributes detection signatures in real-time through the trustworthy distributed platform.more » « less
- 
            One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain’s distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    