skip to main content


Title: Teaching Team Collaboration in Cybersecurity: A Case Study from the Transactive Memory Systems Perspective
Recent trends in the cybersecurity workforce have recognized that effective solutions for complex problems require collective efforts from individuals with diverse sets of knowledge, skills, and abilities. Therefore, the growing need to train students in team collaboration skills propelled educators in computer science and engineering to adopt team-based pedagogical strategies. Team-based pedagogy has shown success in enhancing students' knowledge in course subjects and their motivation in learning. However, it is limited in offering concrete frameworks specifically focusing on how to teach team collaboration skills. As part of an interdisciplinary effort, we draw on Transactive Memory Systems Theory-a communication theory that explains how individuals in groups learn who knows what and organize who does what-in developing a Team Knowledge Sharing Assignment as a tool for student teams to structure their team collaboration processes. This paper reports a result of a case study in designing and facilitating the assignment for cybersecurity students enrolled in a scholarship program. Students' evaluations and the instructor's assessment reveal that the assignment made a positive impact on students' team collaboration skills by helping them successfully identify their team members' expertise and capitalize on their team's knowledge resources when delegating functional roles. Based on this case study, we offer practical suggestions on how the assignment could be used for various classes or cybersecurity projects and how instructors could maximize its benefits.  more » « less
Award ID(s):
1922410
NSF-PAR ID:
10324018
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Global Engineering Education Conference (EDUCON)
Page Range / eLocation ID:
841 to 845
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose an innovative practice based on agile software development methods. This research approach introduces agility into learning of research in an academic environment, resulting in an Agile Research Team. Such a research team follows an agile approach, based on modifications to the Scrum approach, to collaboratively learn about research, and to manage research projects and the researchers involved. Success in research requires self-motivation, collaboration, and knowledge exchange. Traditional research occurs in top-down research groups that are led by a leading researcher, who oversees postdoctoral researchers and Ph.D. students, who in turn manage graduate and undergraduate level students. It is up to individual researchers to stay motivated, to acquire the necessary skills to conduct research, and, oftentimes, to decide what the following steps are. Much like effective research groups, agile software development approaches rely on individuals to form self-organizing and motivated teams to deliver technical excellence. Agile software development teams also require an environment of sharing knowledge between senior and junior developers. Agile approaches can facilitate the efficient exchange of knowledge due to a strong dependency on face-to-face communication and teamwork. With the emerging adoption of agile methods for software development in industry and its ability to expedite projects’ delivery, we argue that such approaches can potentially provide similar benefits for researchers and students in academia. The advantages that agile methods provide are twofold: the ability to respond faster to change, and a shorter feedback loop, which facilitates the learning of how to conduct research. This paper explores the impactful benefits of using an agile approach to manage research team projects to keep researchers motivated, enhance the learning of knowledge and research skills, increase scalability, and foster inclusivity. This paper will also present the roles, responsibilities, and processes defined for managing an Agile Research Team to support adoption of the approach with other research teams. In addition, results and lessons learned are presented following our experience with using the approach as described in this work. 
    more » « less
  2. While engineering grows as a part of elementary education, important questions arise about the skills and practices we ask of students. Both collaboration and decision making are complex and critical to the engineering design process, but come with social and emotional work that can be difficult for elementary students to navigate. Productive engagement in collaborative teams has been seen to be highly variable; for some teams, interpersonal conflicts move the design process forward, while for others they stall the process. In this work in progress, we are investigating the research question, what is the nature of students’ disciplinary talk during scaffolded decision making? We explore this research question via a case study of one student group in a 4th-grade classroom enrolled in an outreach program run by a private university in a Northeastern city. This program sends pairs of university students into local elementary schools to facilitate engineering in the classroom for one hour per week. This is the only engineering instruction the elementary students receive and the engineering curriculum is planned by the university students. For the implementation examined in this study, the curriculum was designed by two researchers to scaffold collaborative groupwork and decision making. The instruction was provided by an undergraduate and one of the researchers, a graduate student. The scaffolds designed for this semester of outreach include a set of groupwork norms and a decision matrix. The groupwork norms were introduced on the first day of instruction; the instructors read them aloud, proposed groupwork scenarios to facilitate a whole class discussion about whether or not the norms were followed and how the students could act to follow the norms, and provided time for students to practice the norms in their engineering design groups for the first project. For the rest of the semester, an anchor chart of the norms was displayed in the classroom and referenced to encourage consensus. The researchers designed the decision matrix scaffold to encourage design decisions between multiple prototypes based on problem criteria and test results. Instructors modeled the use of this decision matrix on the third day of instruction, and students utilized the matrix in both design projects of the semester. Data sources for this descriptive study include students’ written artifacts, photos of their design constructions, and video records of whole-class and team discourse. We employ qualitative case study and microethnographic analysis techniques to explore the influence of the intentional discourse scaffolds on students’ collaborative and decision-making practices. Our analysis allowed us to characterize the linguistic resources (including the decision matrix) that the students used to complete four social acts during decision making: design evaluation, disagreeing with a teammate, arguing for a novel idea, and sympathizing with a design. This research has implications for the design of instructional scaffolds for engineering curricula at the elementary school level, whether taking place in an outreach program or in regular classroom instruction. 
    more » « less
  3. Engineering has historically been positioned as “objective” and “neutral” (Cech, 2014), supporting a technical/social dualism in which “hard” technical skills are valued over “soft” social skills such as empathy and team management (Faulkner, 2007). Disrupting this dualism will require us to transform the way that engineering is taught, to include the social, economic, and political aspects of engineering throughout the curriculum. One promising approach to integrating social and technical is through developing students’ critical sociotechnical literacy, supporting students in coming to “understand the intrinsic and systemic sociotechnical relationship between people, communities, and the built environment” (McGowan & Bell, 2020, p. 981). This work-in-progress study is part of a larger NSF-funded research project that explores integrating sociotechnical topics with technical content knowledge in a first-year engineering computing course. This course has previously focused on teaching students how to code, the basics of data science, and some applications to engineering. The revised course engages students in a series of sociotechnical topics, such as analyzing and interpreting data-based evidence of environmental racism. Each week, students read short articles and write reflections to prepare for in-class small group discussions. Near the end of the semester, students examined the topic of racial bias in medical equipment. Students read two popular news articles that discussed differences in accuracies of pulse oximeter readings for patients with different skin tones. We analyze students’ reflection responses for evidence of their developing sociotechnical literacy along three dimensions: (1) bias, (2) differential impact, and (3) responsibility. This exploratory case study employs thematic analysis (Braun & Clarke, 2006) to analyze the students’ written reflections for this topic. Students reflected on evidence of racial bias and potential causes of bias in the device, how this bias is located in and furthers historical patterns of racism in medicine, and considered who or what might be responsible for either causing or fixing the now-known racial bias. 
    more » « less
  4. Beyond engineering skills, today’s graduates are expected to have a number of professional skills by the time they enter the working world. Increasingly, innovation is one of the arenas where professional engineers should be adept at operating. However, in order to educate our students for contributing to innovation activities in their organizations, we need a better understanding of the knowledge, skills and attitudes that are relevant for early-career engineers in their development efforts. As a starting point to add to this understanding, we start by asking: what does meaningful engineering work look like in the eyes of early career engineers? We then go on to consider engineering work that is not only meaningful but also innovative, asking: What does innovative work look like in the eyes of early career engineers? Finally, we consider: How do innovative work and engineering work more generally compare? Based on qualitative in-depth semi-structured interviews, this paper analyzes the work experiences of 13 young engineers in their first years of work after graduating from universities in the United States. Interviewee-reported critical incidents of top and bottom moments, as well as experiences in creating, advancing and implementing new ideas in work, were coded into different dimensions of learning experiences according to Mezirow’s [1] transformative learning theory in order to understand better what these experiences comprise. Many positively experienced innovation efforts were related to implementing new features or components to products or process improvements, and collaboration and feedback played an important role in these efforts. Negatively experienced innovation efforts, in contrast, were related to a lack in implementation, solutions and resources. Top and bottom moments were strongly tied to the social dimension of work: top moments were typically related to camaraderie with peers or recognition coming from managers, and bottom experiences with an absence of social connections in addition to falling short of one’s own expectations. The results suggest that managers should be cognizant of the importance of social connections and feedback cycles with their young engineers who are looking for guidance and validation of their efforts. For educators, the results highlight the importance of equipping our graduates with skills suited to navigate this active, social landscape of engineering practice. There are more challenges to tackle in today’s educational settings to prepare students for the collaboration, people-coordination, presentation, and community-building skills they will need in their professional lives. 
    more » « less
  5. This Work-in-Progress paper investigates how students participating in a chemical engineering (ChE) Research Experience for Undergraduates (REU) program conceptualize and make plans for research projects. The National Science Foundation has invested substantial financial resources in REU programs, which allow undergraduate students the opportunity to work with faculty in their labs and to conduct hands-on experiments. Prior research has shown that REU programs have an impact on students’ perceptions of their research skills, often measured through the Undergraduate Research Student Self-Assessment (URSSA) survey. However, few evaluation and research studies have gone beyond perception data to include direct measures of students’ gains from program participation. This work-in-progress describes efforts to evaluate the impact of an REU on students’ conceptualization and planning of research studies using a pre-post semi-structured interview process. The construct being investigated for this study is planning, which has been espoused as a critical step in the self-regulated learning (SRL) process (Winne & Perry, 2000; Zimmerman, 2008). Students who effectively self-regulate demonstrate higher levels of achievement and comprehension (Dignath & Büttner, 2008), and (arguably) work efficiency. Planning is also a critical step in large projects, such as research (Dvir & Lechler, 2004). Those who effectively plan their projects make consistent progress and are more likely to achieve project success (Dvir, Raz, & Shenhar, 2003). Prior REU research has been important in demonstrating some positive impacts of REU programs, but it is time to dig deeper into the potential benefits to REU participation. Many REU students are included in weekly lab meetings, and thus potentially take part in the planning process for research projects. Thus, the research question explored here is: How do REU participants conceptualize and make plans for research projects? The study was conducted in the ChE REU program at a large, mid-Atlantic research-oriented university during the summer of 2018. Sixteen students in the program participated in the study, which entailed them completing a planning task followed by a semi-structured interview at the start and the end of the REU program. During each session, participants read a case statement that asked them to outline a plan in writing for a research project from beginning to end. Using semi-structured interview procedures, their written outlines were then verbally described. The verbalizations were recorded and transcribed. Two members of the research team are currently analyzing the responses using an open coding process to gain familiarity with the transcripts. The data will be recoded based on the initial open coding and in line with a self-regulatory and project-management framework. Results: Coding is underway, preliminary results will be ready by the draft submission deadline. The methods employed in this study might prove fruitful in understanding the direct impact on students’ knowledge, rather than relying on their perceptions of gains. Future research could investigate differences in students’ research plans based on prior research experience, research intensity of students’ home institutions, and how their plans may be impacted by training. 
    more » « less