skip to main content


Title: Contradictory Phylogenetic Signals in the Laurasiatheria Anomaly Zone
Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade.  more » « less
Award ID(s):
1838273 2032063 2032006
NSF-PAR ID:
10324086
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Genes
Volume:
13
Issue:
5
ISSN:
2073-4425
Page Range / eLocation ID:
766
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phylogenomic analysis of large genome-wide sequence data sets can resolve phylogenetic tree topologies for large species groups, help test the accuracy of and improve resolution for earlier multi-locus studies and reveal the level of agreement or concordance within partitions of the genome for various tree topologies. Here we used a target-capture approach to sequence 1088 single-copy exons for more than 200 labrid fishes together with more than 100 outgroup taxa to generate a new data-rich phylogeny for the family Labridae. Our time-calibrated phylogenetic analysis of exon-capture data pushes the root node age of the family Labridae back into the Cretaceous to about 79 Ma years ago. The monotypic Centrogenys vaigiensis, and the order Uranoscopiformes (stargazers) are identified as the sister lineages of Labridae. The phylogenetic relationships among major labrid subfamilies and within these clades were largely congruent with prior analyses of select mitochondrial and nuclear datasets. However, the position of the tribe Cirrhilabrini (fairy and flame wrasses) showed discordance, resolving either as the sister to a crown julidine clade or alternatively sister to a group formed by the labrines, cheilines and scarines. Exploration of this pattern using multiple approaches leads to slightly higher support for this latter hypothesis, highlighting the importance of genome-level data sets for resolving short internodes at key phylogenetic positions in a large, economically important groups of coral reef fishes. More broadly, we demonstrate how accounting for sources of biological variability from incomplete lineage sorting and exploring systematic error at conflicting nodes can aid in evaluating alternative phylogenetic hypotheses. [coral reefs; divergence time estimation; exon-capture; fossil calibration; incomplete lineage sorting.]

     
    more » « less
  2. Abstract

    The bulk of knowledge on marine ciliates is from shallow and/or sunlit waters. We studied ciliate diversity and distribution across epi‐ and mesopelagic oceanic waters, using DNA metabarcoding and phylogeny‐based metrics. We analyzed sequences of the 18S rRNA gene (V4 region) from 369 samples collected at 12 depths (0–1000 m) at the Bermuda Atlantic Time‐series Study site of the Sargasso Sea (North Atlantic) monthly for 3 years. The comprehensive depth and temporal resolutions analyzed led to three main findings. First, there was a gradual but significant decrease in alpha‐diversity (based on Faith's phylogenetic diversity index) from surface to 1000‐m waters. Second, multivariate analyses of beta‐diversity (based on UniFrac distances) indicate that ciliate assemblages change significantly from photic to aphotic waters, with a switch from Oligotrichea to Oligohymenophorea prevalence. Third, phylogenetic placement of sequence variants and clade‐level correlations (EPA‐ng and GAPPA algorithms) show Oligotrichea, Litostomatea, Prostomatea, and Phyllopharyngea as anti‐correlated with depth, while Oligohymenophorea (especially Apostomatia) have a direct relationship with depth. Two enigmatic environmental clades include either prevalent variants widely distributed in aphotic layers (the Oligohymenophorea OLIGO5) or subclades differentially distributed in photic versus aphotic waters (the Discotrichidae NASSO1). These results settle contradictory relationships between ciliate alpha‐diversity and depth reported before, suggest functional changes in ciliate assemblages from photic to aphotic waters (with the prevalence of algivory and mixotrophy vs. omnivory and parasitism, respectively), and indicate that contemporary taxon distributions in the vertical profile have been strongly influenced by evolutionary processes. Integration of DNA sequences with organismal data (microscopy, functional experiments) and development of databases that link these sources of information remain as major tasks to better understand ciliate diversity, ecological roles, and evolution in the ocean.

     
    more » « less
  3. INTRODUCTION Resolving the role that different environmental forces may have played in the apparent explosive diversification of modern placental mammals is crucial to understanding the evolutionary context of their living and extinct morphological and genomic diversity. RATIONALE Limited access to whole-genome sequence alignments that sample living mammalian biodiversity has hampered phylogenomic inference, which until now has been limited to relatively small, highly constrained sequence matrices often representing <2% of a typical mammalian genome. To eliminate this sampling bias, we used an alignment of 241 whole genomes to comprehensively identify and rigorously analyze noncoding, neutrally evolving sequence variation in coalescent and concatenation-based phylogenetic frameworks. These analyses were followed by validation with multiple classes of phylogenetically informative structural variation. This approach enabled the generation of a robust time tree for placental mammals that evaluated age variation across hundreds of genomic loci that are not restricted by protein coding annotations. RESULTS Coalescent and concatenation phylogenies inferred from multiple treatments of the data were highly congruent, including support for higher-level taxonomic groupings that unite primates+colugos with treeshrews (Euarchonta), bats+cetartiodactyls+perissodactyls+carnivorans+pangolins (Scrotifera), all scrotiferans excluding bats (Fereuungulata), and carnivorans+pangolins with perissodactyls (Zooamata). However, because these approaches infer a single best tree, they mask signatures of phylogenetic conflict that result from incomplete lineage sorting and historical hybridization. Accordingly, we also inferred phylogenies from thousands of noncoding loci distributed across chromosomes with historically contrasting recombination rates. Throughout the radiation of modern orders (such as rodents, primates, bats, and carnivores), we observed notable differences between locus trees inferred from the autosomes and the X chromosome, a pattern typical of speciation with gene flow. We show that in many cases, previously controversial phylogenetic relationships can be reconciled by examining the distribution of conflicting phylogenetic signals along chromosomes with variable historical recombination rates. Lineage divergence time estimates were notably uniform across genomic loci and robust to extensive sensitivity analyses in which the underlying data, fossil constraints, and clock models were varied. The earliest branching events in the placental phylogeny coincide with the breakup of continental landmasses and rising sea levels in the Late Cretaceous. This signature of allopatric speciation is congruent with the low genomic conflict inferred for most superordinal relationships. By contrast, we observed a second pulse of diversification immediately after the Cretaceous-Paleogene (K-Pg) extinction event superimposed on an episode of rapid land emergence. Greater geographic continuity coupled with tumultuous climatic changes and increased ecological landscape at this time provided enhanced opportunities for mammalian diversification, as depicted in the fossil record. These observations dovetail with increased phylogenetic conflict observed within clades that diversified in the Cenozoic. CONCLUSION Our genome-wide analysis of multiple classes of sequence variation provides the most comprehensive assessment of placental mammal phylogeny, resolves controversial relationships, and clarifies the timing of mammalian diversification. We propose that the combination of Cretaceous continental fragmentation and lineage isolation, followed by the direct and indirect effects of the K-Pg extinction at a time of rapid land emergence, synergistically contributed to the accelerated diversification rate of placental mammals during the early Cenozoic. The timing of placental mammal evolution. Superordinal mammalian diversification took place in the Cretaceous during periods of continental fragmentation and sea level rise with little phylogenomic discordance (pie charts: left, autosomes; right, X chromosome), which is consistent with allopatric speciation. By contrast, the Paleogene hosted intraordinal diversification in the aftermath of the K-Pg mass extinction event, when clades exhibited higher phylogenomic discordance consistent with speciation with gene flow and incomplete lineage sorting. 
    more » « less
  4. It is now well established that the end-Cretaceous mass extinction had enormous repercussions for mammalian evolution. Following the extinction, during the Paleocene, mammals started to radiate, occupying new and diverse ecological niches. However, the phylogenetic relationships between the socalled “archaic” mammals of this time, and their position within Placentalia, remain contentious. The Periptychidae are a clade of distinctive “archaic” ungulates, composed of ~17 genera of small to large bodied, highly bunodont, terrestrial herbivores that were among the first placental mammals to appear after the end-Cretaceous mass extinction. Although the Periptychidae has been historically considered a distinctive “condylarth” subgroup, their higherlevel relationships have been rarely tested. Here, we present an inclusive cladistic analysis to determine and test the phylogenetic affinities of Periptychidae and other key Paleocene groups within Placentalia under different cladistic optimality criteria. We scored 140 taxa for 503 dental, cranial and postcranial characters, incorporating new morphological and taxonomic data. The data were then subject to parsimony and Bayesian tree of morphological evolution, running 5000000 generations with samples every 200 generations and discarding 25% of the samples as burn-in. Stationarity was achieved and a 50 percent majority rule consensus tree from the sampled trees was obtained. The parsimony analysis recovered 48 most parsimonious trees. The two consensus trees derived from the different analyses are largely congruent and recover a monophyletic Periptychidae, although the parsimony consensus tree is better resolved. These results are consistent with simulation studies showing that parsimony tends to be more precise (more nodes reconstructed) than Bayesian analyses, although less accurate. The main topological differences between the results relate to the position of poorly known Puercan (earliest Paleocene) species. Our results affirm the monophyly of Periptychidae and its nesting within a group of “condylarths” positioned at the base of Laurasiatheria and closely related to Artiodactyla. Within Periptychidae we found support for the three major subfamilial divisions in both analyses. These results highlight the importance of using different optimality criteria when resolving a phylogeny and provide a new insight into how placental mammals were evolving after the end-Cretaceous extinction. Grant Information: CONICYT PFCHA/DOCTORADO BECAS CHILE/2018, European Research Council Starting Grant (ERC StG 2017, 756226, PalM), National Science Foundation (NSF EAR 1654952, DEB 1654949) 
    more » « less
  5. The anaerobic gut fungi (AGF,Neocallimastigomycota) represent a basal zoosporic phylum within the kingdomFungi. Twenty genera are currently described, all of which were isolated from the digestive tracts of mammalian herbivores. Here, we report on the isolation and characterization of novel AGF taxa from faecal samples of tortoises. Twenty-nine fungal isolates were obtained from seven different tortoise species. Phylogenetic analysis using the D1/D2 region of the LSU rRNA gene, ribosomal internal transcribed spacer 1, and RNA polymerase II large subunit grouped all isolates into two distinct, deep-branching clades (clades T and B), with a high level of sequence divergence to their closest cultured relative (Khoyollomyces ramosus). Average amino acid identity values calculated using predicted peptides from the isolates’ transcriptomes ranged between 60.80–66.21  % (clade T), and 61.24–64.83  % (clade B) when compared to all other AGF taxa; values that are significantly below recently recommended thresholds for genus (85%) and family (75%) delineation in theNeocallimastigomycota. Both clades displayed a broader temperature growth range (20–45 °C, optimal 30 °C for clade T, and 30–42 °C, optimal 39 °C for clade B) compared to all other AGF taxa. Microscopic analysis demonstrated that strains from both clades produced filamentous hyphae, polycentric rhizoidal growth patterns, and monoflagellated zoospores. Isolates in clade T were characterized by the production of unbranched, predominantly narrow hyphae, and small zoospores, while isolates in clade B were characterized by the production of multiple sporangiophores and sporangia originating from a single central swelling resulting in large multi-sporangiated structures. Based on the unique phylogenetic positions, AAI values, and phenotypic characteristics, we propose to accommodate these isolates into two novel genera (TestudinimycesandAstrotestudinimyces), and species (T. gracilisandA. divisus) within the orderNeocallimastigales. The type species are strains T130AT(T. gracilis) and B1.1T(A. divisus).

     
    more » « less