skip to main content


Title: A scaling relationship for non-thermal radio emission from ordered magnetospheres: from the top of the main sequence to planets
ABSTRACT In this paper, we present the analysis of incoherent non-thermal radio emission from a sample of hot magnetic stars, ranging from early-B to early-A spectral type. Spanning a wide range of stellar parameters and wind properties, these stars display a commonality in their radio emission which presents new challenges to the wind scenario as originally conceived. It was thought that relativistic electrons, responsible for the radio emission, originate in current sheets formed, where the wind opens the magnetic field lines. However, the true mass-loss rates from the cooler stars are too small to explain the observed non-thermal broad-band radio spectra. Instead, we suggest the existence of a radiation belt located inside the inner magnetosphere, similar to that of Jupiter. Such a structure explains the overall indifference of the broad-band radio emissions on wind mass-loss rates. Further, correlating the radio luminosities from a larger sample of magnetic stars with their stellar parameters, the combined roles of rotation and magnetic properties have been empirically determined. Finally, our sample of early-type magnetic stars suggests a scaling relationship between the non-thermal radio luminosity and the electric voltage induced by the magnetosphere’s co-rotation, which appears to hold for a broader range of stellar types with dipole-dominated magnetospheres (like the cases of the planet Jupiter and the ultracool dwarf stars and brown dwarfs). We conclude that well-ordered and stable rotating magnetospheres share a common physical mechanism for supporting the generation of non-thermal electrons.  more » « less
Award ID(s):
2009412
NSF-PAR ID:
10324091
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
507
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1979 to 1998
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    KQ Vel is a binary system composed of a slowly rotating magnetic Ap star with a companion of unknown nature. In this paper, we report the detection of its radio emission. We conducted a multifrequency radio campaign using the ATCA interferometer (band-names: 16 cm, 4 cm, and 15 mm). The target was detected in all bands. The most obvious explanation for the radio emission is that it originates in the magnetosphere of the Ap star, but this is shown unfeasible. The known stellar parameters of the Ap star enable us to exploit the scaling relationship for non-thermal gyro-synchrotron emission from early-type magnetic stars. This is a general relation demonstrating how radio emission from stars with centrifugal magnetospheres is supported by rotation. Using KQ Vel’s parameters the predicted radio luminosity is more than five orders of magnitudes lower than the measured one. The extremely long rotation period rules out the Ap star as the source of the observed radio emission. Other possible explanations for the radio emission from KQ Vel, involving its unknown companion, have been explored. A scenario that matches the observed features (i.e. radio luminosity and spectrum, correlation to X-rays) is a hierarchical stellar system, where the possible companion of the magnetic star is a close binary (possibly of RS CVn type) with at least one magnetically active late-type star. To be compatible with the total mass of the system, the last scenario places strong constraints on the orbital inclination of the KQ Vel stellar system.

     
    more » « less
  2. Abstract

    The mass-loss rates from single massive stars are high enough to form radio photospheres at large distances from the stellar surface, where the wind is optically thick to (thermal) free–free opacity. Here we calculate the far-infrared, millimeter, and radio band spectral energy distributions (SEDs) that can result from the combination of free–free processes and synchrotron emission, to explore the conditions for nonthermal SEDs. Simplifying assumptions are adopted in terms of scaling relations for the magnetic field strength and the spatial distribution of relativistic electrons. The wind is assumed to be spherically symmetric, and we consider the effect of Razin suppression on the synchrotron emission. Under these conditions, long-wavelength SEDs with synchrotron emission can be either more steep or more shallow than the canonical asymptotic power-law SED from a nonmagnetic wind. When nonthermal emission is present, the resultant SED shape is generally not a power law; however, the variation in the slope can change slowly with wavelength. Consequently, over a limited range of wavelengths, the SED can masquerade as approximately a power law. While most observed nonthermal long-wavelength spectra are associated with binarity, synchrotron emission can have only a mild influence on single-star SEDs, requiring finer levels of wavelength sampling for the detection of the effect.

     
    more » « less
  3. ABSTRACT

    Magnetic confinement of stellar winds leads to the formation of magnetospheres, which can be sculpted into centrifugal magnetospheres (CMs) by rotational support of the corotating plasma. The conditions required for the CMs of magnetic early B-type stars to yield detectable emission in H α – the principal diagnostic of these structures – are poorly constrained. A key reason is that no detailed study of the magnetic and rotational evolution of this population has yet been performed. Using newly determined rotational periods, modern magnetic measurements, and atmospheric parameters determined via spectroscopic modelling, we have derived fundamental parameters, dipolar oblique rotator models, and magnetospheric parameters for 56 early B-type stars. Comparison to magnetic A- and O-type stars shows that the range of surface magnetic field strength is essentially constant with stellar mass, but that the unsigned surface magnetic flux increases with mass. Both the surface magnetic dipole strength and the total magnetic flux decrease with stellar age, with the rate of flux decay apparently increasing with stellar mass. We find tentative evidence that multipolar magnetic fields may decay more rapidly than dipoles. Rotational periods increase with stellar age, as expected for a magnetic braking scenario. Without exception, all stars with H α emission originating in a CM are (1) rapid rotators, (2) strongly magnetic, and (3) young, with the latter property consistent with the observation that magnetic fields and rotation both decrease over time.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We present X-ray and radio observations of what may be the closest Type Iax supernova (SN) to date, SN 2014dt (d = 12.3–19.3 Mpc), and provide tight constraints on the radio and X-ray emission. We infer a specific radio luminosity $L_R\lt (1.0\!-\!2.4)\times 10^{25}\, \rm {erg\, s^{-1}\, Hz^{-1}}$ at a frequency of 7.5 GHz and a X-ray luminosity $L_X\lt 1.4\times 10^{38}\, \rm {erg\, s^{-1}}$ (0.3–10 keV) at ∼38–48 d post-explosion. We interpret these limits in the context of Inverse Compton (IC) emission and synchrotron emission from a population of electrons accelerated at the forward shock of the explosion in a power-law distribution $N_e(\gamma _e)\propto \gamma _e^{-p}$ with p = 3. Our analysis constrains the progenitor system mass-loss rate to be $\dot{M}\lt 5.0 \times 10^{-6} \rm {M_{\odot }\, yr^{-1}}$ at distances $r\lesssim 10^{16}\, \rm {cm}$ for an assumed wind velocity $v_w=100\, \rm {km\, s^{-1}}$, and a fraction of post-shock energy into magnetic fields and relativistic electrons of ϵB = 0.01 and ϵe = 0.1, respectively. This result rules out some of the parameter space of symbiotic giant star companions, and it is consistent with the low mass-loss rates expected from He-star companions. Our calculations also show that the improved sensitivity of the next-generation Very Large Array (ngVLA) is needed to probe the very low-density media characteristic of He stars that are the leading model for binary stellar companions of white dwarfs giving origin to Type Iax SNe. 
    more » « less
  5. null (Ed.)
    ABSTRACT Strongly magnetic B-type stars with moderately rapid rotation form ‘centrifugal magnetospheres’ (CMs) from the magnetic trapping of stellar wind material in a region above the Kepler co-rotation radius. A long-standing question is whether the eventual loss of such trapped material occurs from gradual drift and/or diffusive leakage, or through sporadic ‘centrifugal breakout’ (CBO) events, wherein magnetic tension can no longer contain the built-up mass. We argue here that recent empirical results for Balmer-α emission from such B-star CMs strongly favour the CBO mechanism. Most notably, the fact that the onset of such emission depends mainly on the field strength at the Kepler radius, and is largely independent of the stellar luminosity, strongly disfavours any drift/diffusion process, for which the net mass balance would depend on the luminosity-dependent wind feeding rate. In contrast, we show that in a CBO model, the maximum confined mass in the magnetosphere is independent of this wind feeding rate and has a dependence on field strength and Kepler radius that naturally explains the empirical scalings for the onset of H α emission, its associated equivalent width, and even its line profile shapes. However, the general lack of observed Balmer emission in late-B and A-type stars could still be attributed to a residual level of diffusive or drift leakage that does not allow their much weaker winds to fill their CMs to the breakout level needed for such emission; alternatively, this might result from a transition to a metal–ion wind that lacks the requisite hydrogen. 
    more » « less