skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards understanding the neural origins of hibernation
ABSTRACT Hibernators thrive under harsh environmental conditions instead of initiating canonical behavioral and physiological responses to promote survival. Although the physiological changes that occur during hibernation have been comprehensively researched, the role of the nervous system in this process remains relatively underexplored. In this Review, we adopt the perspective that the nervous system plays an active, essential role in facilitating and supporting hibernation. Accumulating evidence strongly suggests that the hypothalamus enters a quiescent state in which powerful drives to thermoregulate, eat and drink are suppressed. Similarly, cardiovascular and pulmonary reflexes originating in the brainstem are altered to permit the profoundly slow heart and breathing rates observed during torpor. The mechanisms underlying these changes to the hypothalamus and brainstem are not currently known, but several neuromodulatory systems have been implicated in the induction and maintenance of hibernation. The intersection of these findings with modern neuroscience approaches, such as optogenetics and in vivo calcium imaging, has opened several exciting avenues for hibernation research.  more » « less
Award ID(s):
1923127 2015622
PAR ID:
10324104
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
225
Issue:
1
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hibernation is a fascinating adaptation to food-scarce winters, characterized by significant physiological and behavioral changes, including fasting, inactivity, and insulin resistance. While hibernation is critical for the survival of many species, hibernation-related traits are often considered pathological in humans. Hibernation has been studied from a genomic perspective, especially with respect to transcription across multiple tissues. These studies have identified the differential activity of signaling pathways related to metabolism, tissue protection, and other mechanisms likely underlying hibernation phenotypes. Bears, in particular, are an interesting model for physiological and genomic studies of hibernation due to their large size and unique mode of hibernation compared to other small mammalian hibernators. Investigating the intricate molecular mechanisms underlying bear hibernation may therefore provide insight into fundamental biological processes with potential translational implications for human health, particularly with respect to metabolic disorders such as type II diabetes. This review focuses on recent advances and outstanding questions related to the exploration of bear hibernation from a genomic perspective. 
    more » « less
  2. Hibernation is a highly seasonal physiological adaptation that allows brown bears (Ursus arctos) to survive extended periods of low food availability. Similarly, daily or circadian rhythms conserve energy by coordinating body processes to optimally match the environmental light/dark cycle. Brown bears express circadian rhythms in vivo and their cells do invitro throughout the year, suggesting that these rhythms may play important roles during periods of negative energy balance. Here, we use time-series analysis of RNA sequencing data and timed measurements of ATP production in adipose-derived fibroblasts from active and hibernation seasons under two temperature conditions to confirm that rhythmicity was present. Culture temperature matching that of hibernation body temperature (34°C) resulted in a delay of daily peak ATP production in comparison with active season body temperatures (37°C). The timing of peaks of mitochondrial gene transcription was altered as were the amplitudes of transcripts coding for enzymes of the electron transport chain. Additionally, we observed changes in mean expression and timing of key metabolic genes such as SIRT1 and AMPK which are linked to the circadian system and energy balance. The amplitudes of several circadian gene transcripts were also reduced. These results reveal a link between energy conservation and a functioning circadian system in hibernation 
    more » « less
  3. Hibernation is an adaptation to extreme environmental seasonality that has been studied for almost 200 years, but our mechanistic understanding of the underlying physiological system remains lacking due to the partially observed nature of the system. During hibernation, small mammals, such as the Arctic ground squirrel, exhibit dramatic oscillations in body temperature, typically one of the only physiological states measured, of up to 40◦C. These spikes are known as interbout arousals and typically occur 10-20 times throughout hibernation. The physiological mechanism that drives interbout arousals is unknown, but two distinct mechanisms have been hypothesized. Using model selection for partially observed systems, we are able to differentiate between these two mechanistic hypotheses using only body temperature data recorded from a free-ranging Arctic ground squirrel. We then modify our discovered physiological model of Arctic ground squirrel to include environmental information and find that we can qualitatively match body temperature data recorded from a wide range of species, including a bird, a shrew, and a bear, which also dynamically modulate body temperature. Our results suggest that a universal, environmentally sensitive mechanism could regulate body temperature across a diverse range of species—a mechanistic restructuring of our current understanding of the physiological organization across species. While the findings presented here are applicable to thermophysiology, the general modeling procedure is applicable to time series data collected from partially observed biological, chemical, physical, mechanical, and cosmic systems for which the goal is to elucidate the underlying mechanism or control structure. 
    more » « less
  4. Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states. 
    more » « less
  5. Abstract Hibernation in brown bears is an annual process involving multiple physiologically distinct seasons—hibernation, active, and hyperphagia. While recent studies have characterized broad patterns of differential gene regulation and isoform usage between hibernation and active seasons, patterns of gene and isoform expression during hyperphagia remain relatively poorly understood. The hyperphagia stage occurs between active and hibernation seasons and involves the accumulation of large fat reserves in preparation for hibernation. Here, we use time-series analyses of gene expression and isoform usage to interrogate transcriptomic regulation associated with all three seasons. We identify a large number of genes with significant differential isoform usage (DIU) across seasons and show that these patterns of isoform usage are largely tissue-specific. We also show that DIU and differential gene-level expression responses are generally non-overlapping, with only a small subset of multi-isoform genes showing evidence of both gene-level expression changes and changes in isoform usage across seasons. Additionally, we investigate nuanced regulation of candidate genes involved in the insulin signaling pathway and find evidence of hyperphagia-specific gene expression and isoform regulation that may enhance fat accumulation during hyperphagia. Our findings highlight the value of using temporal analyses of both gene- and isoform-level gene expression when interrogating complex physiological phenotypes and provide new insight into the mechanisms underlying seasonal changes in bear physiology. 
    more » « less