skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-fidelity simulations of electrolyte jets in an electric field
When an electrolyte jet is injected through a grounded nozzle into a region with an electric field, non-axisymmetric whipping instabilities are often observed in the jet. These instabilities are characterized by large scale violent, chaotic and quick whips of the jet. This system is numerically modeled using an electrohydrodynamic formulation that includes the Nernst-Planck model for ion transport with an aim to investigate the origin and propagation of the instabilities in the jet. Simulating this process will help gain an in-depth insight into the complex physical phenomena that occur. In this article, the formulation and modeling of electrolyte jets using a Poisson–Nernst–Planck (PNP) model is discussed.  more » « less
Award ID(s):
1749779
PAR ID:
10324144
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In many electrochemical processes, the transport of charged species is governed by the Nernst–Planck equation, which includes terms for both diffusion and electrochemical migration. In this work, a multi-physics, multi-species model based on the smoothed particle hydrodynamics (SPH) method is presented to model the Nernst–Planck equation in systems with electrodeposition. Electrodeposition occurs when ions are deposited onto an electrode. These deposits create complex boundary geometries, which can be challenging for numerical methods to resolve. SPH is a particularly effective numerical method for systems with moving and deforming boundaries due to its particle nature. This paper discusses the SPH implementation of the Nernst–Planck equations with electrodeposition and verifies the model with an analytical solution and a numerical integrator. A convergence study of migration and precipitation is presented to illustrate the model’s accuracy, along with comparisons of the deposition growth front to experimental results. 
    more » « less
  2. A model is constructed to describe the flow field and arbitrary deformation of a drop or vesicle that contains and is embedded in an electrolyte solution, where the flow and deformation are caused by an applied electric field. The applied field produces an electrokinetic flow, which is set up on the charge-up time scale $$\tau _{*c}=\lambda _{*} a_{*}/D_{*}$$ , where $$\lambda _{*}$$ is the Debye screening length, $$a_{*}$$ is the inclusion length scale and $$D_{*}$$ is an ion diffusion constant. The model is based on the Poisson–Nernst–Planck and Stokes equations. These are reduced or simplified by forming the limit of strong electrolytes, for which dissolved salts are completely ionised in solution, together with the limit of thin Debye layers. Debye layers of opposite polarity form on either side of the drop interface or vesicle membrane, together forming an electrical double layer. Two formulations of the model are given. One utilises an integral equation for the velocity field on the interface or membrane surface together with a pair of integral equations for the electrostatic potential on the outer faces of the double layer. The other utilises a form of the stress-balance boundary condition that incorporates the double layer structure into relations between the dependent variables on the layers’ outer faces. This constitutes an interfacial boundary condition that drives an otherwise unforced Stokes flow outside the double layer. For both formulations relations derived from the transport of ions in each Debye layer give additional boundary conditions for the potential and ion concentrations outside the double layer. 
    more » « less
  3. Abstract This paper provides a comprehensive derivation and application of the nonlocal Nernst-Planck-Poisson (NNPP) system for accurate modeling of electrochemical corrosion with a focus on the biodegradation of magnesium-based implant materials under physiological conditions. The NNPP system extends and generalizes the peridynamic bi-material corrosion model by considering the transport of multiple ionic species due to electromigration. As in the peridynamic corrosion model, the NNPP system naturally accounts for moving boundaries due to the electrochemical dissolution of solid metallic materials in a liquid electrolyte as part of the dissolution process. In addition, we use the concept of a diffusive corrosion layer, which serves as an interface for constitutive corrosion modeling and provides an accurate representation of the kinetics with respect to the corrosion system under consideration. Through the NNPP model, we propose a corrosion modeling approach that incorporates diffusion, electromigration and reaction conditions in a single nonlocal framework. The validity of the NNPP-based corrosion model is illustrated by numerical simulations, including a one-dimensional example of pencil electrode corrosion and a three-dimensional simulation of a Mg-10Gd alloy bone implant screw decomposing in simulated body fluid. The numerical simulations correctly reproduce the corrosion patterns in agreement with macroscopic experimental corrosion data. Using numerical models of corrosion based on the NNPP system, a nonlocal approach to corrosion analysis is proposed, which reduces the gap between experimental observations and computational predictions, particularly in the development of biodegradable implant materials. 
    more » « less
  4. A single ion channel is a membrane protein with an ion selectivity filter that allows only a single species of ions (such as potassium ions) to pass through in the “open” state. Its selectivity filter also naturally separates a solvent domain into an intracellular domain and an extracellular domain. Such biological and geometrical characteristics of a single ion channel are novelly adopted in the construction of a new kind of dielectric continuum ion channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this paper. An effective PNPSIC finite element solver is then developed and implemented as a software package workable for a single ion channel with a three-dimensional X-ray crystallographic molecular structure and a mixture of multiple ionic species. Numerical results for a potassium channel confirm the convergence and efficiency of the PNPSIC finite element solver and demonstrate the high performance of the software package. Moreover, the PNPSIC model is applied to the calculation of electric current and validated by biophysical experimental data. 
    more » « less
  5. During transient instabilities in a 2 eV, highly collisional MHD-driven plasma jet experiment, evidence of a 6 keV electron tail was observed via x-ray measurements. The cause for this unexpected high energy tail is explored using numerical simulations of the Rutherford scattering of a large number of electrons and ions in the presence of a uniform electric field that is abruptly turned on as in the experiment. When the only active processes are Rutherford scattering and acceleration by the electric field, contrary to the classical Fokker–Planck theory of plasma resistivity, it is found that no steady state develops, and instead, the particle kinetic energy increases continuously. However, when a power loss mechanism is introduced mimicking atomic line radiation, a near steady state can develop and, in this case, an energetic electron tail similar to that observed in the experiment can develop. The reasons underlying this behavior are analyzed, and it is shown that an important consideration is that Rutherford scattering is dominated by the cumulative effect of grazing collisions, whereas atomic line radiation requires an approximately direct rather than a grazing collision. 
    more » « less