skip to main content

This content will become publicly available on March 1, 2023

Title: The Paschen Jump as a Diagnostic of the Diffuse Nebular Continuum Emission in Active Galactic Nuclei*
Abstract Photoionization modeling of active galactic nuclei (AGN) predicts that diffuse continuum (DC) emission from the broad-line region makes a substantial contribution to the total continuum emission from ultraviolet through near-infrared wavelengths. Evidence for this DC component is present in the strong Balmer jump feature in AGN spectra, and possibly from reverberation measurements that find longer lags than expected from disk emission alone. However, the Balmer jump region contains numerous blended emission features, making it difficult to isolate the DC emission strength. In contrast, the Paschen jump region near 8200 Å is relatively uncontaminated by other strong emission features. Here, we examine whether the Paschen jump can aid in constraining the DC contribution, using Hubble Space Telescope Space Telescope Imaging Spectrograph spectra of six nearby Seyfert 1 nuclei. The spectra appear smooth across the Paschen edge, and we find no evidence of a Paschen spectral break or jump in total flux. We fit multicomponent spectral models over the range 6800–9700 Å and find that the spectra can still be compatible with a significant DC contribution if the DC Paschen jump is offset by an opposite spectral break resulting from blended high-order Paschen emission lines. The fits imply DC contributions ranging more » from ∼10% to 50% at 8000 Å, but the fitting results are highly dependent on assumptions made about other model components. These degeneracies can potentially be alleviated by carrying out fits over a broader wavelength range, provided that models can accurately represent the disk continuum shape, Fe ii emission, high-order Balmer line emission, and other components. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1907290 1909199 2009230
Publication Date:
NSF-PAR ID:
10324254
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
Page Range or eLocation-ID:
60
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a new empirical template for iron emission in active galactic nuclei (AGNs) covering the 4000–5600 Å range. The new template is based on a spectrum of the narrow-line Seyfert 1 galaxy Mrk 493 obtained with the Hubble Space Telescope. In comparison with the canonical iron template object I Zw 1, Mrk 493 has narrower broad-line widths, lower reddening, and a less extreme Eddington ratio, making it a superior choice for template construction. We carried out a multicomponent spectral decomposition to produce a template incorporating all the permitted and forbidden lines of Fe ii identified in the Mrk 493 spectrum over this wavelength range, as well as lines from Ti ii , Ni ii , and Cr ii . We tested the template by fitting it to AGN spectra spanning a broad range of iron emission properties, and we present a detailed comparison with fits using other widely used monolithic and multicomponent iron emission templates. The new template generally provides the best fit (lowest χ 2 ) compared to other widely used monolithic empirical templates. In addition, the new template yields more accurate spectral measurements including a significantly better match of the derived Balmer line profiles (H βmore », H γ , H δ ), in contrast with results obtained using the other templates. Our comparison tests show that the choice of iron template can introduce a systematic bias in measurements of the H β line width, which consequently impacts single-epoch black hole mass estimates by ∼0.1 dex on average and possibly up to ∼0.3–0.5 dex individually.« less
  2. Abstract We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3 days cadence gri -band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z < 0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN . Within the framework of the “lamp-post” reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as R CE ∝ L 0.48±0.04 with a scatter of 0.2 dex, analogous to the well-known radius–luminosity relation of broad H β . These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the R CE – L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of themore »CE size and model-predicted disk size anticorrelates with the continuum luminosity, which is indicative of a potential nondisk BLR lag contribution evolving with the luminosity. Finally, a robust positive correlation between the CE size and black hole mass is detected.« less
  3. Abstract

    In recent years, continuum-reverberation mapping involving high-cadence UV/optical monitoring campaigns of nearby active galactic nuclei has been used to infer the size of their accretion disks. One of the main results from these campaigns has been that in many cases the accretion disks appear too large, by a factor of 2–3, compared to standard models. Part of this may be due to diffuse continuum emission from the broad-line region (BLR), which is indicated by excess lags around the Balmer jump. Standard cross-correlation lag-analysis techniques are usually used to just recover the peak or centroid lag and cannot easily distinguish between reprocessing from the disk and BLR. However, frequency-resolved lag analysis, where the lag is determined at each Fourier frequency, has the potential to separate out reprocessing on different size scales. Here we present simulations to demonstrate the potential of this method and then apply a maximum-likelihood approach to determine frequency-resolved lags in NGC 5548. We find that the lags in NGC 5548 generally decrease smoothly with increasing frequency, and are not easily described by accretion-disk reprocessing alone. The standard cross-correlation lags are consistent with lags at frequencies lower than 0.1 day−1, indicating they are dominated from reprocessing at sizemore »scales greater than ∼10 light days. A combination of a more distant reprocessor, consistent with the BLR, along with a standard-sized accretion disk is more consistent with the observed lags than a larger disk alone.

    « less
  4. ABSTRACT

    Driven by the imminent need to rapidly process and classify millions of AGN spectra drawn from next generation astronomical facilities, we present a spectral fitting routine for Type 2 AGN spectra optimized for high volume processing, using the quasar spectral fitting library (qsfit). We analyse an optically selected sample of 813 luminous Type 2 AGN spectra at z < 0.83 from the Sloan Digital Sky Survey (SDSS) to qualify its performance. We report a median narrow line H α/H β Balmer decrement of 4.5 ± 0.8, alluding to the presence of dust in the narrow line region (NLR). We publish a specialized qsfit fitting routine for high signal-to-noise ratio spectra and general fitting routine for double peaked Type 2 AGN spectra applied on a subsample of 45 spectra from our parent sample. We report a median red and blue peak velocity separation of 390 ± 60 kms−1. No trend is found for red or blue peaks to exhibit systematically different luminosity or ionization properties. Emission line diagnostics show that the double peaks in all sources are illuminated by an AGN-powered ionizing continuum. Finally, we examine the morphology of host galaxies of our double peaked sample. We find double peaked Type 2 AGN reside in merging systemsmore »at a comparable frequency to single peaked AGN. This suggests that the double peaked AGN phenomenon is likely to have a bi-conical outflow origin in the majority of cases. We publicly release the code used for spectral analysis and produced catalogues used in this work.

    « less
  5. Abstract

    We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.