skip to main content


Title: The Sloan Digital Sky Survey Reverberation Mapping Project: Investigation of Continuum Lag Dependence on Broad-line Contamination and Quasar Properties
Abstract

This work studies the relationship between accretion-disk size and quasar properties, using a sample of 95 quasars from the Sloan Digital Sky Survey Reverberation Mapping Project with measured lags between thegandiphotometric bands. Our sample includes disk lags that are both longer and shorter than predicted by the Shakura and Sunyaev model, requiring explanations that satisfy both cases. Although our quasars each have one lag measurement, we explore the wavelength-dependent effects of diffuse broad-line region (BLR) contamination through our sample’s broad redshift range, 0.1 <z< 1.2. We do not find significant evidence of variable diffuse Feiiand Balmer nebular emission in the rms spectra, nor from Anderson–Darling tests of quasars in redshift ranges with and without diffuse nebular emission falling in the observed-frame filters. Contrary to previous work, we do not detect a significant correlation between the measured continuum and BLR lags in our luminous quasar sample, similarly suggesting that our continuum lags are not dominated by diffuse nebular emission. Similar to other studies, we find that quasars with larger-than-expected continuum lags have lower 3000 Å luminosities, and we additionally find longer continuum lags with lower X-ray luminosities and black hole masses. Our lack of evidence for diffuse BLR contribution to the lags indicates that the anticorrelation between continuum lag and luminosity is not likely to be due to the Baldwin effect. Instead, these anticorrelations favor models in which the continuum lag increases in lower-luminosity active galactic nuclei, including scenarios featuring magnetic coupling between the accretion disk and X-ray corona, and/or ripples or rims in the disk.

 
more » « less
NSF-PAR ID:
10486692
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
961
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 93
Size(s):
["Article No. 93"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.

     
    more » « less
  2. ABSTRACT

    We have measured the wavelength-dependent lags between the X-ray, ultraviolet, and optical bands in the high-accretion rate ($L/L_{\rm Edd}\approx 40{{\ \rm per\ cent}}$) active galactic nucleus (AGN) Mrk 110 during two intensive monitoring campaigns in February and September 2019. After including the 2017 data published by Vincentelli et al., we divided the observations into three intervals with different X-ray luminosities. The first interval has the lowest X-ray luminosity and did not exhibit the U-band excess positive lag, or the X-ray excess negative lag that is seen in most AGNs. However, these excess lags are seen in the two subsequent intervals of higher X-ray luminosity. Although the data are limited, the excess lags appear to scale with X-ray luminosity. Our modelling shows that lags expected from reprocessing of X-rays by the accretion disc vary hardly at all with increasing luminosity. Therefore, as the U-band excess almost certainly arises from Balmer-continuum emission from the broad-line region (BLR), we attribute these lag changes to changes in the contribution from the BLR. The change is easily explained by the usual increase in the inner radius of the BLR with increasing ionizing luminosity.

     
    more » « less
  3. Abstract We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3 days cadence gri -band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z < 0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN . Within the framework of the “lamp-post” reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as R CE ∝ L 0.48±0.04 with a scatter of 0.2 dex, analogous to the well-known radius–luminosity relation of broad H β . These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the R CE – L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of the CE size and model-predicted disk size anticorrelates with the continuum luminosity, which is indicative of a potential nondisk BLR lag contribution evolving with the luminosity. Finally, a robust positive correlation between the CE size and black hole mass is detected. 
    more » « less
  4. Abstract We present accretion-disk structure measurements from UV–optical reverberation mapping (RM) observations of a sample of eight quasars at 0.24 < z < 0.85. Ultraviolet photometry comes from two cycles of Hubble Space Telescope monitoring, accompanied by multiband optical monitoring by the Las Cumbres Observatory network and Liverpool Telescopes. The targets were selected from the Sloan Digital Sky Survey Reverberation Mapping project sample with reliable black hole mass measurements from H β RM results. We measure significant lags between the UV and various optical griz bands using JAVELIN and CREAM methods. We use the significant lag results from both methods to fit the accretion-disk structure using a Markov Chain Monte Carlo approach. We study the accretion disk as a function of disk normalization, temperature scaling, and efficiency. We find direct evidence for diffuse nebular emission from Balmer and Fe ii lines over discrete wavelength ranges. We also find that our best-fit disk color profile is broadly consistent with the Shakura & Sunyaev disk model. We compare our UV–optical lags to the disk sizes inferred from optical–optical lags of the same quasars and find that our results are consistent with these quasars being drawn from a limited high-lag subset of the broader population. Our results are therefore broadly consistent with models that suggest longer disk lags in a subset of quasars, for example, due to a nonzero size of the ionizing corona and/or magnetic heating contributing to the disk response. 
    more » « less
  5. Abstract

    In recent years, continuum-reverberation mapping involving high-cadence UV/optical monitoring campaigns of nearby active galactic nuclei has been used to infer the size of their accretion disks. One of the main results from these campaigns has been that in many cases the accretion disks appear too large, by a factor of 2–3, compared to standard models. Part of this may be due to diffuse continuum emission from the broad-line region (BLR), which is indicated by excess lags around the Balmer jump. Standard cross-correlation lag-analysis techniques are usually used to just recover the peak or centroid lag and cannot easily distinguish between reprocessing from the disk and BLR. However, frequency-resolved lag analysis, where the lag is determined at each Fourier frequency, has the potential to separate out reprocessing on different size scales. Here we present simulations to demonstrate the potential of this method and then apply a maximum-likelihood approach to determine frequency-resolved lags in NGC 5548. We find that the lags in NGC 5548 generally decrease smoothly with increasing frequency, and are not easily described by accretion-disk reprocessing alone. The standard cross-correlation lags are consistent with lags at frequencies lower than 0.1 day−1, indicating they are dominated from reprocessing at size scales greater than ∼10 light days. A combination of a more distant reprocessor, consistent with the BLR, along with a standard-sized accretion disk is more consistent with the observed lags than a larger disk alone.

     
    more » « less